




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第三节,一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,幂级数,机动目录上页下页返回结束,第十一章,一、函数项级数的概念,设,为定义在区间I上的函数项级数.,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域;,若常数项级数,为定义在区间I上的函数,称,收敛,发散,所有,为其收,为其发散点,发散点的全体称为其发散域.,机动目录上页下页返回结束,为级数的和函数,并写成,若用,令余项,则在收敛域上有,表示函数项级数前n项的和,即,在收敛域上,函数项级数的和是x的函数,称它,机动目录上页下页返回结束,例如,等比级数,它的收敛域是,它的发散域是,或写作,又如,级数,级数发散;,所以级数的收敛域仅为,有和函数,机动目录上页下页返回结束,二、幂级数及其收敛性,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如,幂级数,为幂级数的系数.,即是此种情形.,的情形,即,称,机动目录上页下页返回结束,收敛,发散,定理1.(Abel定理),若幂级数,则对满足不等式,的一切x幂级数都绝对收敛.,反之,若当,的一切x,该幂级数也发散.,时该幂级数发散,则对满足不等式,证:设,收敛,则必有,于是存在,常数M0,使,阿贝尔目录上页下页返回结束,当时,收敛,故原幂级数绝对收敛.,也收敛,反之,若当,时该幂级数发散,下面用反证法证之.,假设有一点,满足不等式,所以若当,满足,且使级数收敛,面的证明可知,级数在点,故假设不真.,的x,原幂级数也发散.,时幂级数发散,则对一切,则由前,也应收敛,与所设矛盾,证毕,机动目录上页下页返回结束,幂级数在(,+)收敛;,由Abel定理可以看出,中心的区间.,用R表示幂级数收敛与发散的分界点,的收敛域是以原点为,则,R=0时,幂级数仅在x=0收敛;,R=时,幂级数在(R,R)收敛;,(R,R)加上收敛的端点称为收敛域.,R称为收敛半径,,在R,R,可能收敛也可能发散.,外发散;,在,(R,R)称为收敛区间.,机动目录上页下页返回结束,定理2.若,的系数满足,证:,1)若0,则根据比值审敛法可知:,当,原级数收敛;,当,原级数发散.,即,时,1)当0时,2)当0时,3)当时,即,时,则,机动目录上页下页返回结束,2)若,则根据比值审敛法可知,绝对收敛,3)若,则对除x=0以外的一切x原级发散,对任意x原级数,因此,因此,的收敛半径为,说明:据此定理,因此级数的收敛半径,机动目录上页下页返回结束,对端点x=1,的收敛半径及收敛域.,解:,对端点x=1,级数为交错级数,收敛;,级数为,发散.,故收敛域为,例1.求幂级数,机动目录上页下页返回结束,例2.求下列幂级数的收敛域:,解:(1),所以收敛域为,(2),所以级数仅在x=0处收敛.,规定:0!=1,机动目录上页下页返回结束,例3.,的收敛半径.,解:级数缺少奇次幂项,不能直接应用定理2,比值审敛法求收敛半径.,时级数收敛,时级数发散,故收敛半径为,故直接由,机动目录上页下页返回结束,例4.,的收敛域.,解:令,级数变为,当t=2时,级数为,此级数发散;,当t=2时,级数为,此级数条件收敛;,因此级数的收敛域为,故原级数的收敛域为,即,机动目录上页下页返回结束,三、幂级数的运算,定理3.设幂级数,及,的收敛半径分别为,令,则有:,其中,以上结论可用部分和的极限证明.,机动目录上页下页返回结束,说明:,两个幂级数相除所得幂级数的收敛半径可能比,原来两个幂级数的收敛半径小得多.,机动目录上页下页返回结束,定理4若幂级数,的收敛半径,(证明见第六节),则其和函,在收敛域上连续,且在收敛区间内可逐项求导与,逐项求积分,运算前后收敛半径相同:,注:逐项积分时,运算前后端点处的敛散性不变.,机动目录上页下页返回结束,例6.,的和函数,解:易求出幂级数的收敛半径为1,x1时级数发,散,机动目录上页下页返回结束,例7.求级数,的和函数,解:易求出幂级数的收敛半径为1,及,收敛,机动目录上页下页返回结束,因此由和函数的连续性得:,而,及,机动目录上页下页返回结束,例8.,解:设,则,机动目录上页下页返回结束,而,故,机动目录上页下页返回结束,1.求幂级数收敛域的方法,1)对标准型幂级数,先求收敛半径,再讨论端点的收敛性.,2)对非标准型幂级数(缺项或通项为复合式),求收敛半径时直接用比值法或根值法,2.幂级数的性质,两个幂级数在公共收敛区间内可进行加、减与,也可通过换元化为标准型再求.,乘法运算.,机动目录上页下页返回结束,回忆:,2)在收敛区间内幂级数的和函数连续;,3)幂级数在收敛区间内可逐项求导和求积分.,1.已知,处条件收敛,问该级数收敛,半径是多少?,答:,根据Abel定理可知,级数在,收敛,时发散.,故收敛半径为,机动目录上页下页返回结束,练习题:,解,缺少偶次幂的项,级数收敛,级数发散,级数发散,级数发散,原级数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年长春理工大学公开招聘博士人才(71人)考前自测高频考点模拟试题及参考答案详解一套
- 班组安全教育和培训计划课件
- 2025年烟台市公费医学生考试选聘(139人)考前自测高频考点模拟试题及答案详解(考点梳理)
- 班组安全培训课件提意见
- 班组安全培训记录范例课件
- 2025广西南宁上林县白圩镇中心卫生院招聘村卫生室公共卫生服务协助人员5人考前自测高频考点模拟试题含答案详解
- 2025安徽芜湖市特种设备检验研究院招聘编外人员6人考前自测高频考点模拟试题及参考答案详解一套
- 2025北京明天幼稚集团招聘模拟试卷附答案详解(模拟题)
- 2025河北沧州孟村饶安高级中学招聘1人考前自测高频考点模拟试题带答案详解
- 2025福建厦门市集美区坑内小学顶岗教师招聘2人模拟试卷及答案详解(网校专用)
- 《计算机视觉-基于OpenCV的图像处理》全套教学课件
- GB/T 18029.1-2024轮椅车第1部分:静态稳定性的测定
- 高考生物选择性必修2生物与环境基础知识填空默写(每天打卡)
- FZT 34002-2016 亚麻印染布行业标准
- 2023年高考物理(山东卷)真题评析及2024备考策略
- 全国身份证号地区对应表
- 主要机械设备表(汇总200种)
- GB/T 18386-2017电动汽车能量消耗率和续驶里程试验方法
- GB/T 17282-1998根据运动粘度确定石油分子量(相对分子质量)的方法
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- GB 12326-2000电能质量电压波动和闪变
评论
0/150
提交评论