




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
古典概型习题课,1.基本事件有如下两个特点:(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成.2.一般地,一次试验有下面两个特征:(1)有限性,即在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的;称这样的试验为古典概型.判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:有限性和等可能性.,互斥,基本事件的和,3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.,判断下列命题正确与否:(1)掷两枚硬币,等可能出现“两个正面”,“两个反面”,“一正一反”3种结果;(2)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同;(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0和不小于0的可能性相同;(4)分别从3名男同学,4名女同学中各选一名做代表,那么每个同学当选的可能性相同;(5)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的可能性肯定不同.,解,求古典概型的步骤:,(1)判断是否为等可能性事件;(2)列举所有基本事件的总结果数n(3)列举事件A所包含的结果数m(4)计算,当结果有限时,列举法是很常用的方法,(2010山东卷)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求nm2的概率,例1、从含有两件正品a,b和一件次品c的三件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件中恰好有一件次品的概率。,分析:样本空间事件A它们的元素个数n,m公式,解:每次取一个,取后不放回连续取两次,其样本空间是,=,(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),n=6,用A表示“取出的两件中恰好有一件次品”这一事件,则,A=,(a,c),(b,c),(c,a),(c,b),m=4,P(A)=,例2、从含有两件正品a,b和一件次品c的三件产品中每次任取1件,每次取出后放回,连续取两次,求取出的两件中恰好有一件次品的概率.,解:有放回的连取两次取得两件,其一切可能的结果组成的样本空间是,=,(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c),n=9,用B表示“恰有一件次品”这一事件,则,B=,(a,c),(b,c),(c,a),(c,b),m=4,P(B)=,练习,1、从含有两件正品a,b和一件次品c的三件产品中任取2件,求取出的两件中恰好有一件次品的概率。,解:试验的样本空间为,=ab,ac,bc,n=3,用A表示“取出的两件中恰好有一件次品”这一事件,则,A=ac,bc,m=2,P(A)=,2、从1,2,3,4,5五个数字中,任取两数,求两数都是奇数的概率.,解:试验的样本空间是,=(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),n=10,用A来表示“两数都是奇数”这一事件,则,A=(13),(15),(3,5),m=3,P(A)=,例6、在一次口试中,要从5个题目中随机抽取3题进行回答,答对两题者为优秀,答对1题者为及格.某考生能回答其中2题.求:(1)获得优秀的概率;(2)获得及格或及格以上的概率.,点拨:正难则反,练习:教材p130:练习1,2,3题,1:将一个骰子先后抛掷2次,观察向上的点数。问:(1)共有多少种不同的结果?(2)两数之和是3的倍数的结果有多少种?(3)两数之和是3的倍数的概率是多少?,第二次抛掷后向上的点数,123456,第一次抛掷后向上的点数,654321,解:(1),(1.1)(1.2)(1.3)(1.4)(1.5)(1.6),(2.1)(2.2)(2.3)(2.4)(2.5)(2.6),(3.1)(3.2)(3.3)(3.4)(3.5)(3.6),(4.1)(4.2)(4.3)(4.4)(4.5)(4.6),(5.1)(5.2)(5.3)(5.4)(5.5)(5.6),(6.1)(6.2)(6.3)(6.4)(6.5)(6.6),(2)记“两次向上点数之和是3的倍数”为事件A,,则事件A的结果有12种。,(3)两次向上点数之和是3的倍数的概率为:,解:记“两次向上点数之和不低于10”为事件B,,则事件B的结果有6种,,因此所求概率为:,变式1:两数之和不低于10的结果有多少种?两数之和不低于10的的概率是多少?,变式:点数之和为质数的概率为多少?,变式:点数之和为多少时,概率最大且概率是多少?,解:点数之和为7时,概率最大,,且概率为:,789101112678910115678910456789345678234567,解决此类题用到了图表法,2.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A),,3.甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?解甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是109=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A,下面求事件A包含的基本事件数:甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A的基本事件数为64=24.,4.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求:(1)甲中奖的概率P(A);(2)甲、乙都中奖的概率;(3)只有乙中奖的概率;(4)乙中奖的概率.解(1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P1=.(2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共54=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P2=.(3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有32=6种基本事件,P3=.(4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P4=.,解,5,(2007宁夏文,20)设有关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.,解设事件A为“方程x2+2ax+b2=0有实根”.当a0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石棉禁用影响-洞察及研究
- 基因编辑技术与microRNA治疗的结合研究-洞察及研究
- 手拉手献爱心课件
- 有关新年策划方案
- 福建省漳州市2025-2026学年上学期九年级9月检测数学试卷(无答案)
- 2025届云南省名校联盟高三上学期月考(八)物理试题(含答案)
- 手字族课件黄亢美
- 质量信息化建设-洞察及研究
- 水资源承载力动态监测-洞察及研究
- 智能厨房与物联网在家庭能源管理中的应用-洞察及研究
- 高三物理一轮复习-光学名师公开课获奖课件百校联赛一等奖课件
- 国庆节主持词开场白
- 中医体质分型
- 标书内技术服务和售后服务方案
- 《中国特色社会主义道路的开辟与发展》部优课件
- 前列腺癌根治术护理查房课件
- 英语四级核心词690个附高频词汇表
- 初中国学诵读教案
- 2024年石家庄交通投资发展集团有限责任公司招聘笔试冲刺题(带答案解析)
- (高清版)TDT 1037-2013 土地整治重大项目可行性研究报告编制规程
- 拒绝内耗拥抱更美好的自己
评论
0/150
提交评论