已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER2LINEARTIME-INVARIANTSYSTEMS2.0INTRODUCTION,Representationofsignalsaslinearcombinationofdelayedimpulses.Convolutionsum(卷积和)orconvolutionintegral(卷积积分)representationofLTIsystems.ImpulseresponseandsystemspropertiesSolutionstolinearconstant-coefficientdifferenceanddifferentialequations(线性常系数差分或微分方程).,2.1DISCRETE-TIMESYSTEMS:THECONVOLUTIONSUM,Derivationsteps:Step1:Representingdiscrete-timesignalsintermsofunitsamples:,Step2:DefiningUnitsampleresponsehn:responseoftheLTIsystemtotheunitsamplen.nhn,Step3:Writinganyarbitraryinputxnas:,Step4:Bytakinguseoflinearityandtime-invariance,wecangettheresponseyntoxnwhichistheweightedlinearcombinationofdelayedunitsampleresponsesasfollowing:,TheConvolutionSumRepresentationofLTISystems,convolutionsumorsuperpositionsum:,Convolutionoperationsymbol:,LTIsystemiscompletelycharacterizedbyitsresponsetotheunitsample-hn.,Example2.1,1,1,0.5,GraphofyninExample2.1,FromExample2.1,wecandrawthefollowingtable:,Thus,weobtainamethodforthecomputationofconvolutionsum,thatissuitablefortwoshortsequences.,xn=1,1,10,hn=0.5,1,0.5,1,0.5-2,xn*hn=0.5,1.5,2,2.5,2,1.5,0.5-2,0.51.522.521.50.5,0.510.510.5,Example2.2,Consideraninputxnandaunitsampleresponsehngivenby,Determineandplottheoutput,Usingthegeometricsumformulatoevaluatetheequation,wehave,GraphofyninExample2.2,2.2CONTINUOUS-TIMELTISYSTEMS:THECONVOLUTIONINTEGRAL,TheRepresentationofContinuous-TimeSignalsinTermsofImpulses:,Mathematicalrepresentationfortherectangularpulses,as,thesummationapproachesanintegralandistheunitimpulsefunction,ComparedwiththeSamplingpropertyoftheunitimpulse:,Givetheastheresponseofacontinuous-timeLTIsystemtotheinput,thentheresponseofthesystemtopulseis,Thus,theresponsetois,As,inaddition,thesummingbecomesanintegral.Therefore,convolutionintegralorsuperpositionintegral:,unitimpulseresponseh(t):theresponsetotheinput.(单位冲激响应),Convolutionintegralsymbol:,Acontinuous-timeLTIsystemiscompletelycharacterizedbyitsunitimpulseresponseh(t).,Example2.3,Considertheconvolutionofthefollowingtwosignals,whicharedepictedin(a):,Fromthedefinitionoftheconvolutionintegraloftwocontinuous-timesignals,2T,h(t),t-2T0tT,1,x(),For0tT,.Thus,for0tT,.,Interval2.For0tT,2T,h(t),t-2TTt,1,x(),ForTt2T,Thus,forTtTbutt-2T0,i.e.Tt0,butt-2TT,i.e.2Tt3T,Thus,for2Tt3T,.,For2T3T,thereisnooverlapbetweenthenonzeroportionsofand,hence,Summarizing,2.3PROPERTIESOFCONVOLUTIONOPERATION,2.3.1TheCommutativeProperty(交换律),2.3.2TheDistributiveProperty(分配律),Twoequivalentsystems:havingsameimpulseresponses,2.3.3TheAssociativeProperty(结合律),Fourequivalentsystems,2.3.4ConvolvingwithImpulse,2.3.5DifferentiationandIntegrationofConvolutionIntegral,Combiningthetwoproperties,wehave,2.3.6FirstDifferenceandAccumulationofConvolutionSum,2.4.1LTISystemswithandwithoutMemory,2.4.2InvertibilityofLTISystems,Since,2.4PROPERTIESOFLTISYSTEMS,2.4.3CausalityforLTISystems,2.4.4StabilityforLTISystems,Suppose,Proof:,Then,If,Then,Therefore,theabsolutelysummableisasufficientconditiontoguaranteethestabilityofadiscrete-timeLTIsystem.,Toshowthattheabsolutelysummableisalsoanecessaryconditionforthestabilityofadiscrete-timeLTIsystem,Let,where,isconjugate.,Then,xnisboundedby1,thatis,However,If,Then,2.5TheUnitStepResponse(单位阶跃响应)ofanLTISystem,Theunitstepresponse,snors(t),istheoutputofanLTIsystemwheninputxn=unorx(t)=u(t).,Theunitstepresponseofadiscrete-timeLTIsystemistherunningsumofitsunitsampleresponse:,Theunitsampleresponseofadiscrete-timeLTIsystemisthefirstdifferenceofitsunitstepresponse:,Theunitstepresponseofacontinuous-timeLTIsystemistherunningintegralofitsunitimpulseresponse:,Theunitimpulseresponseofacontinuous-timeLTIsystemisthefirstderivativeoftheunitstepresponse:,2.6CAUSALLTISYSTEMSDESCRIBEDBYDIFFERENTIALANDDIFFERENCEEQUATIONS,Linearconstant-coefficientdifferentialequation,Linearconstant-coefficientdifferenceequationisthemathematicalrepresentationofadiscrete-timeLTIsystem.,Linearconstant-coefficientdifferentialequationisthemathematicalrepresentationofacontinuous-timeLTIsystem.,Wemustspecifyoneormoreauxiliaryconditionstosolveadifferential(difference)equation.,Initialrest(初始静止):foracausalLTIsystem,ifx(t)=0fort0intotheoriginalequationyields,Thus,Sothesolutionofthedifferentialequationfort0is,InExample2.4,Takinguseoftheconditioninitialrest,weobtain,Consequently,or,fort0,Example2.5,Jacksavesmoneyeverymonth.ItisknownthatatthebeginningofthenthmonththeamounthesavesintothebankisRMBxnyuan,andtherateofinterestispermonth.SupposeJackwouldntwithdrawhisbankdepositsinwhateversituation,trytogivethedifferenceequationrelatingxnandyn,whichisthedepositsofJackattheendofthenthmonth.(beforethebankcalculatestheinterest),Solution:,ynisconsistsofthesumofthefollowingthreeparts:,xnsavedatthebeginningofthenthmonth,yn-1interestattheendofthe(n-1)thmonth,yn-1depositofthe(n-1)thmonth,Sothedifferenceequationis,also,Difference:,Forsequencexn,itsFirstforwarddifference(一阶前向差分)isdefinedasxn=xn+1xn,itsFirstbackwarddifference(一阶后向差分)isdefinedasxn=xnxn-1,GeneralNth-orderlinearconstant-coefficientdifferenceequation:,Firstresolution:,Nauxiliaryconditions:,Secondresolution:(recursivemethod(迭代法),Example2.6,Solvethedifferenceequationandtheinitialconditionisy0=1.,Theeigenequationis,Sotheeigenvalueisa=2,Wecanwrite,Let,Takingintotheoriginalequationyields,Thus,Thesolutionforthegivenequationis,Fromtheinitialconditionofy0=1,wehave,Consequently,Example2.7,Considerthedifferenceequation,Determinetheoutputrecursivelywiththeconditionofinitialrestand,Rewritethegivendifferenceequationas,Startingfrominitialcondition,wecansolveforsuccessivevaluesofynforn1:,Consideringyn=0forn0,thesolutionis,Question:,Example2.8,Consideracontinuous-timeLTIsystemdescribedbythefollowingdifferentialequationwithinitialconditionsofandinput,Fromthedefinitionofthezero-inputresponse,wehave,Inthecaseofzeroinput,Thuswecanwrite,Equivalently,Consequently,Next,solveforh(t).,Fromthedefinitionoftheunitimpulseresponse,wehave,Andfort0,itbecomes,h(t)isthesolutionforthehomogeneousequation.Thus,Andbecausethesystemisacausalone,thereshouldbe,TheinitialconditionsusedtodetermineA1andA2are,But,Let(2),Then(3),Takingequations(2)and(3)intoequation(1),wehave,Comparingthecoefficientsofthecorrespondingtermsoneachside,Computetheintegralintheintervalof0-,0+onbothsidesofequation(2)toobtain,Analogouslytoequation(3)toobtain,Consequently,Thenfrom,Weobtain,So,Then,Example2.9,ConsideracausalLTIsystemdescribedby,Determinetheunitsampleresponsehn.,Forn0,hnsatisfiesthedifferenceequation,Andthereshouldbe,Substitutinghnforynandnforxnintheoriginaldifferenceequation,andletn=0,weobtain,Itsobviousthat,Takinguseofh0,wemakeoutthecoefficientinhn:,So,Infact,forn=0,h0alsosatisfy,Thus,wecanwrite,Youmayalsotrytherecursivemethodtoobtainthehnforthissystem!,2.7BlockDiagramRepresentationsofFirst-OrderSystemsDescribedbyDifferentialandDifferenceEquations,First-orderdifferenceequation:,addition,delay,multiplication,Threebasicelementsinblockdiagram:adder,multiplieranddelayer.(方框图)(加法器)(乘法器)(延时器),Basicelementsfortheblockdiagramrepresentationofcausaldiscrete-timesystems.(a)anadder(b)amultiplier(c)adelayer.,Blockdiagramrepresentationforthecausaldiscrete-timesystemdescribedbythefirst-ord
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械挂靠公司协议书
- 广东2025年下半年台山市部分事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 校园卫生消毒协议书
- 卸货搬运合同协议书
- 山东2025年下半年高密市事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 安徽合肥市事业单位招考人员易考易错模拟试题(共500题)试卷后附参考答案
- 宁波市北仑区图书馆编外用工招考易考易错模拟试题(共500题)试卷后附参考答案
- 天津高新技术成果转化中心事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 分公司设立的协议书
- 儿子买房合同签协议
- 字节跳动绩效管理制度
- 2026年海南省五指山市房地产市场现状调研报告
- 2025贵州黔西南州政协机关面向全州考聘事业单位工作人员2人考试笔试备考试题及答案解析
- 2025年度黑龙江鹤城农业发展投资有限公司招聘工作人员13人笔试考试参考试题附答案解析
- 2025摄影工作室员工合同模板
- 湖南省长沙市长郡教育集团2024-2025学年八年级上学期期中英语试题(含答案)
- GB/T 30341-2025机动车驾驶员培训教练场技术要求
- 雨课堂在线学堂《现代美学》单元考核测试答案
- 物业管理公司财务审计实施方案
- 钢板桩围堰施工质量通病、原因分析及应对措施
- 机场安全考试题库及答案解析
评论
0/150
提交评论