




免费预览已结束,剩余19页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选最新高一数学知识点总结归纳5篇 高中是学习生涯中最辛苦的三年,而高中数学也是比较难的一门学科。那么,如何学好高中数学呢?下面就是给大家带来的高一数学知识点,希望能帮助到大家! 高一数学知识点总结1 1过两点有且只有一条直线 2两点之间线段最短 3同角或等角的补角相等 4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行 8如果两条直线都和第三条直线平行,这两条直线也互相平行 9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边 16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于180 18推论1直角三角形的两个锐角互余 19推论2三角形的一个外角等于和它不相邻的两个内角的和 20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等 22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等 24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理(sss)有三边对应相等的两个三角形全等 26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等 27定理1在角的平分线上的点到这个角的两边的距离相等 28定理2到一个角的两边的距离相同的点,在这个角的平分线上 29角的平分线是到角的两边距离相等的所有点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33推论3等边三角形的各角都相等,并且每一个角都等于60 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形 36推论2有一个角等于60的等腰三角形是等边三角形 37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38直角三角形斜边上的中线等于斜边上的一半 39定理线段垂直平分线上的点和这条线段两个端点的距离相等 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42定理1关于某条直线对称的两个图形是全等形 43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48定理四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理n边形的内角的和等于(n-2)180 51推论任意多边的外角和等于360 52平行四边形性质定理1平行四边形的对角相等 53平行四边形性质定理2平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3对角线互相平分的四边形是平行四边形 59平行四边形判定定理4一组对边平行相等的四边形是平行四边形 60矩形性质定理1矩形的四个角都是直角 61矩形性质定理2矩形的对角线相等 62矩形判定定理1有三个角是直角的四边形是矩形 63矩形判定定理2对角线相等的平行四边形是矩形 64菱形性质定理1菱形的四条边都相等 65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即s=(ab)2 67菱形判定定理1四边都相等的四边形是菱形 68菱形判定定理2对角线互相垂直的平行四边形是菱形 69正方形性质定理1正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1关于中心对称的两个图形是全等的 72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰 80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边 81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)2s=lh 83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d 85(3)等比性质如果a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n)=a/b 86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91相似三角形判定定理1两角对应相等,两三角形相似(asa) 92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93判定定理2两边对应成比例且夹角相等,两三角形相似(sas) 94判定定理3三边对应成比例,两三角形相似(sss) 95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97性质定理2相似三角形周长的比等于相似比 98性质定理3相似三角形面积的比等于相似比的平方 99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理不在同一直线上的三点确定一个圆。 110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理一条弧所对的圆周角等于它所对的圆心角的一半 117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121直线l和o相交d 直线l和o相切d=r 直线l和o相离dr 122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理圆的切线垂直于经过切点的半径 124推论1经过圆心且垂直于切线的直线必经过切点 125推论2经过切点且垂直于切线的直线必经过圆心 126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理弦切角等于它所夹的弧对的圆周角 129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135两圆外离dr+r两圆外切d=r+r 两圆相交r-rr) 两圆内切d=r-r(rr)两圆内含dr) 136定理相交两圆的连心线垂直平分两圆的公共弦 137定理把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)180/n 140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积sn=pnrn/2p表示正n边形的周长 142正三角形面积3a/4a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 144弧长计算公式:l=nr/180 145扇形面积公式:s扇形=nr2/360=lr/2 146内公切线长=d-(r-r)外公切线长=d-(r+r) 147等腰三角形的两个底脚相等 148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149如果一个三角形的两个角相等,那么这两个角所对的边也相等 150三条边都相等的三角形叫做等边三角形 高一数学知识点总结2 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然; (3)曲线c1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线c2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线c1:f(x,y)=0关于点(a,b)的对称曲线c2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xr时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对xr时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xr时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解kd(d为f(x)的值域); 6.af(x)恒成立af(x)max,;af(x)恒成立af(x)min; 7.(1)(a0,a1,b0,nr+);(2)logan=(a0,a1,b0,b1); (3)logab的符号由口诀“同正异负”记忆;(4)alogan=n(a0,a1,n0); 8.判断对应是否为映射时,抓住两点:(1)a中元素必须都有象且;(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象; 9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为a,值域为b,则有ff-1(x)=x(xb),f-1f(x)=x(xa). 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解; 高一数学知识点总结3 幂函数的性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制*于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x0,则a可以是任意实数; 排除了为0这种可能,即对于x0x=0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)显然幂函数_。 解题方法:换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 练习题: 1、若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a1). (1)求f(log2x)的最小值及对应的x值; (2)x取何值时,f(log2x)f(1)且log2f(x)f(1)? 2、已知函数f(x)=3x+k(k为常数),a(-2k,2)是函数y=f-1(x)图象上的点.z_k.com (1)求实数k的值及函数f-1(x)的解析式; (2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)1恒成立,试求实数m的取值范围. 高一数学知识点总结4 1.学习的心态。 多数中等生的数学成绩是很有希望提升。一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算充足,还有时间进行调整和优化。所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。 2.备考的方向。 什么是备考方向?所谓备考方向就是考试方向。在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。 题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。 3.训练的方式。 每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。很多学生抱怨时间不足,每天做完作业以后,身心疲惫。面对一堆题目,特别是数学题,可以注重以下几个角度: (1)弄清楚自己的需要。例如拿到老师布置的作业,无论是试卷还是课本习题,如果带着情绪做,那么效果肯定不好。首先要弄清自己的需要,比如这些题目中哪些题目质量好?哪些是你
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年4月广东深圳光明区文化广电旅游体育局选聘特聘专干1人模拟试卷及一套完整答案详解
- 2025年中国检验认证集团安徽有限公司招聘考前自测高频考点模拟试题及答案详解(名校卷)
- 2025安徽无为乡投人力资源有限公司代招聘17人笔试题库历年考点版附带答案详解
- 2025广东深圳市服务高质量发展专项招录紧缺专业公务员486人考前自测高频考点模拟试题及参考答案详解1套
- 2025江苏南京工业大学招聘56人考前自测高频考点模拟试题及一套答案详解
- 2025四川阿坝州国鑫政通商业管理有限公司面向社会公开招聘员工10人笔试题库历年考点版附带答案详解
- 2025华电国际电力股份有限公司天津开发区分公司面向集团公司系统内公开招聘35人笔试题库历年考点版附带答案详解
- 2025中远海运博鳌有限公司“启明星”等你来笔试题库历年考点版附带答案详解
- 2025中国石化销售股份有限公司安徽易捷分公司招聘(社会招聘)笔试题库历年考点版附带答案详解
- 2025中国化学工程集团有限公司所属企业招聘笔试题库历年考点版附带答案详解
- 道路运输管理机构人员编制理论研究
- 垃圾发电厂考试题库含答案全套
- 发育生物学实验教案
- 仁爱版九年级英语上册unit2topic1复习课市公开课一等奖省课获奖课件
- 北京市国内旅游合同书
- 公司品牌建设五年规划
- 第二单元 三国两晋南北朝的民族交融与隋唐统一多民族封建国家的发展 知识清单 高中历史统编版(2019)必修中外历史纲要上册
- 居室环境的清洁与消毒
- GB/T 39766-2021人类生物样本库管理规范
- GB/T 2900.50-2008电工术语发电、输电及配电通用术语
- GB/T 2518-2008连续热镀锌钢板及钢带
评论
0/150
提交评论