已阅读5页,还剩90页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter15MultipleIntegrals15.1DoubleIntegralsoverRectangles15.2IteratedIntegrals15.3DoubleIntegralsoverGeneralRegions15.4DoubleIntegralsinpolarcoordinates15.5*ApplicationsofDoubleIntegrals15.6*SurfaceArea,15.1DoubleIntegralsoverRectangles,VolumesandDoubleIntegrals,Afunctionfoftwovariablesdefinedonaclosedrectangle,andwesupposethat,Thegraphoffisasurfacewithequation,LetSbethesolidthatliesaboveRandunderthegraphoff,thatis,(SeeFigure1)FindthevolumeofS,Figure1,1)Partition:,ThefirststepistodividetherectangleRintosubrectangles.,Eachwitharea,2)Approximation:,Athinrectangularbox:,Base:,Height:,Wecanapproximateby,3)Sum:,4)Limit:,AdoubleRiemannsum,DefinitionThedoubleintegraloffovertherectangleRis,ifthislimitexists.,Thesufficientconditionofintegrability:,isintegralonR,Theorem1.,Theorem2.,andfisdiscontinuousonlyonafinitenumberofsmoothcurves,isintegralon,Note,IfthenthevolumeVofthesolidthat,liesabovethatthesurfaceis,Example1,If,evaluatetheintegral,Solution,15.2IteratedIntegrals,Partialintegrationwithrespecttoydefinesafunctionofx:,WeintegrateAwithrespecttoxfromx=atox=b,weget,Theintegralontherightsideiscalledaniteratedintegralandisdenotedby,Thus,Similarly,FubinistheoremIffiscontinuousontherectangle,then,Moregenerally,thisistruethatweassumethatfisboundedonR,fisdiscontinuousonlyonafinitenumberofsmoothcurves,andtheiteratedintegralsexist.,TheproofofFubinistheoremistoodifficulttoincludeInourclass.,Iff(x,y)0,thenwecaninterpretthedoubleintegral,asthevolumeVofthesolidSthatliesabove,Randunderthesurfacez=f(x,y).,So,Or,Example,Solution,Example,Solution,Example,Solution,Specially,If,Then,SomeexamplesoftypeI,SomeexamplesoftypeII,Example4,Findthevolumeofthesolidenclosed,bytheparaboloidandtheplanes,Solution,andaboveregion,Thesolidliesundertheparaboloid,Sothevolumeis,SupposethatDisaboundedregion,thedoubleintegraloffoverDis,15.3DoubleIntegralsoverGeneralRegions,SupposethatDisaboundedregionwhichcanbeenclosedinarectangularregionR.,AnewfunctionFwithdomainR:,IftheintegralofFexistsoverR,thenwedefinethedoubleintegraloffoverDby,SomeexamplesoftypeI,EvaluatewhereDisaregionoftypeI,AnewfunctionFwithdomainR:,IffiscontinuousontypeIregionDsuchthat,then,SomeexamplesoftypeII,IffiscontinuousontypeIIregionDsuchthat,then,Example1,Solution,TypeI,TypeII,PropertiesofDoubleIntegralSupposethatfunctionsfandgarecontinuousonaboundedclosedregionD.Property1Thedoubleintegralofthesum(ordifference)oftwofunctionsexistsandisequaltothesum(ordifference)oftheirdoubleintegrals,thatis,Property2Property3whereDisdividedintotworegionsD1andD2andtheareaofD1D2is0.,Property4Iff(x,y)0forevery(x,y)D,thenProperty5Iff(x,y)g(x,y)forevery(x,y)D,thenMoreover,sinceitfollowsfromProperty5thathence,whereSistheareaofD.,Property6,Property7SupposethatMandmarerespectivelythemaximumandminimumvaluesoffunctionfonD,thenwhereSistheareaofD.Property8(TheMeanValueTheoremforDoubleIntegral)Iff(x,y)iscontinuousonD,thenthereexistsatleastapoint(,)inDsuchthatwhereSistheareaofD.f(,)iscalledtheaverageValueoffonD,Example2,Solution,TypeII,TypeI,Example3,Solution,TypeI,TypeII,Examplechangetheorderofintegration,solution:,Wehave,AnalternativedescriptionofDis,Examplechangetheorderofintegration,solution:,ExampleProvethat,Solution,AnalternativedescriptionofDis,where,Wehave,So,Chapter10ParametricEquationsandPolarCoordinates10.3Polarcoordinates,10.3Polarcoordinates,ThepointoiscalledthepoleThepointPisrepresentedbytheorderedpair(r,)andr,arecall-edpolarcoordinatesofPispositiveifmeasureinthecou-nterclockwisedirectionfromthepo-laraxisandnegativeintheclockwi-sedirection,TheconnectionbetweenpolarandCartesiancoordinates,ExampleConvertthepointfrompolartoCartesiancoordinates,Solution,ExampleRepresentthepointwithCartesiancoordinates,Solution,intermsofpolarcoordinates.,ExampleIdentifythecurvebyfindingaCartesianequationforthecurve,Solution,ExampleFindapolarequationforthecurverepresentedbythegivenCartesianequation,Solution,Chapter15MultipleIntegrals15.1DoubleIntegralsoverRectangles15.2IteratedIntegrals15.3DoubleIntegralsoverGeneralRegions15.4DoubleIntegralsinpolarcoordinates15.5*ApplicationsofDoubleIntegrals15.6*SurfaceArea,15.4DoubleIntegralsinpolarcoordinates,Apolarrectangle,where,The“center”ofthepolarsubrectangle,haspolarcoordinates,Theareaofis,Changetopolarcoordinateinadoubleintegral,IffiscontinuousonapolarrectangleRgivenby,where,then,Solution,1.Iffiscontinuousonapolarregionoftheformthen,2.Iffiscontinuousonapolarregionoftheformthen,3.Iffiscontinuousonapolarregionoftheformthen,Solution:,ExampleFind,。,Disgivenby,So,ExampleEvaluate,,Solution,Wehave,ImproperIntegral(overtheentireplane),whereisthediskwithradiusandcentertheorigin.,whereisthesquarewithvertics.,Example,15.7TripleIntegrals,fisdefindontherectanglarboxB,DefinitionThetripleintegraloffovertheboxBis,ifthislimitexists.,isintegralonB,Theorem1.,FubinistheoremIffiscontinuousontherectanglar,then,boxB,Example,Evaluatethetripleintegral,WhereBistherectangularboxgivenby,Solution,ThetripleintegraloverageneralboundedregionEinthree-dimensionalspace,AsolidregionEissaidtobeoftypeIif,then,IftheprojectionDofEontothexy-planeisatypeIplaneregion,then,then,IftheprojectionDofEontothexy-planeisatypeIIplaneregion,Example,Evaluate,whereEisthesolid,tetrahedronboundedbythefourplanes,and,tetrhi:drn,Solution,Wehave,itisatypeIregion.,15.8TripleIntegralsinCylindricalandSphericalCoodinates,1.CylindricalCoodinates,If,whereDisgiveninpolarcoordinatesby,then,Example,AsolidElieswithinthecylinder,belowtheplane,Solution,abovetheparaboloid,Thedensityatanypointisproportional,toitsdistancefromtheaxisofthecylinder.,FindthemassofE.,Wehave,Sincethedensityatanypointisproportional,toitsdistancefromthez-axis,thedensityfunctionis,wherekistheproportionalityconstant.Therefore,themassis,Example,Evaluatetheintegralbychangingtocylindricalcoordinates.,Solution,Thesolidregionhasamuchsimplerdescriptionincylindricalcoordinates:,Thesolidregionis,2.SphericalCoodinates,whereEisasphericalwedgegivenby,IfEisageneralsphericalregionsuchas,then,Example,Evaluatetheintegralbychangingtosphericalcoordinates.,Solution,Thesolidregionhasamuchsimplerdescriptioninsphericalcoordinates:,Thesolidregionis,Example,Usesphericalcoordinatestofindthevolume,Solution,ThevolumeofEis,Thesolidis,ofthesolidthatliesabovetheconeand,belowthesphere,15.9ChangeofVariablesinMutipleIntegrals,AtransformationTfromtheuv-planetothexy-plane,where,or,Tisatransformation,whichmeansthatandhavecontinuousfirst-orderpartialderivatives.,AtransformationTisafunctionwhosedomanandrangearebothsubsetsofIfthenthepointiscalledtheimageofthepointIfnotwopointshavethesameimage,Tiscalledone-to-one.,AtransformationTonaregionSintheuv-plane.,TtransformsSintoaregionRinthexy-planecalledtheimageofS,consistingoftheimagesofallpointsinS.,IfTisone-to-onetransformation,thenithasaninversetransformationfromthexy-planetotheuv-plane.,Example,Atransformationisdefinedby,Sisthetriangularregionwithvertices,Solution,Thetransformatonmapstheboundaryof,Si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市2025上海中国农业科学院上海兽医研究所人才招聘6人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 2025重庆广播电视集团(总台)所属企业社会延长招聘笔试历年备考题库附带答案详解
- 2025贵州铜仁市碧江区选聘60人笔试历年难易错考点试卷带答案解析
- 2025秋季四川成都轨道交通集团有限公司“蓉漂人才荟”专场校园招聘15人笔试参考题库附带答案详解(3卷)
- 2026年建筑项目施工质量服务合同
- 2026年医院智能导诊机器人语音交互系统开发合同
- 未来五年家用电梯行业直播电商战略分析研究报告
- 2026年建筑医院古手术合同
- 未来五年电竞企业ESG实践与创新战略分析研究报告
- 2026年建筑节水设施设计合同
- 2026年中国人民银行直属事业单位招聘(60人)备考题库带答案解析
- 企业年终财务部年终总结
- 2025年秋季学期国家开放大学《理工英语4》形考任务综合测试完整答案(不含听力部分)
- DBJ50-T-200-2024 建筑桩基础技术标准
- GB/T 8733-2000铸造铝合金锭
- GA/T 383-2014法庭科学DNA实验室检验规范
- GA 802-2019道路交通管理机动车类型
- 脑卒中急诊处理2课件
- 钻井设备及钻井流程简介课件
- 毕业证委托书模板
- 人教版高中英语必修三课件 Unit 5 Canada 1
评论
0/150
提交评论