




已阅读5页,还剩90页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter15MultipleIntegrals15.1DoubleIntegralsoverRectangles15.2IteratedIntegrals15.3DoubleIntegralsoverGeneralRegions15.4DoubleIntegralsinpolarcoordinates15.5*ApplicationsofDoubleIntegrals15.6*SurfaceArea,15.1DoubleIntegralsoverRectangles,VolumesandDoubleIntegrals,Afunctionfoftwovariablesdefinedonaclosedrectangle,andwesupposethat,Thegraphoffisasurfacewithequation,LetSbethesolidthatliesaboveRandunderthegraphoff,thatis,(SeeFigure1)FindthevolumeofS,Figure1,1)Partition:,ThefirststepistodividetherectangleRintosubrectangles.,Eachwitharea,2)Approximation:,Athinrectangularbox:,Base:,Height:,Wecanapproximateby,3)Sum:,4)Limit:,AdoubleRiemannsum,DefinitionThedoubleintegraloffovertherectangleRis,ifthislimitexists.,Thesufficientconditionofintegrability:,isintegralonR,Theorem1.,Theorem2.,andfisdiscontinuousonlyonafinitenumberofsmoothcurves,isintegralon,Note,IfthenthevolumeVofthesolidthat,liesabovethatthesurfaceis,Example1,If,evaluatetheintegral,Solution,15.2IteratedIntegrals,Partialintegrationwithrespecttoydefinesafunctionofx:,WeintegrateAwithrespecttoxfromx=atox=b,weget,Theintegralontherightsideiscalledaniteratedintegralandisdenotedby,Thus,Similarly,FubinistheoremIffiscontinuousontherectangle,then,Moregenerally,thisistruethatweassumethatfisboundedonR,fisdiscontinuousonlyonafinitenumberofsmoothcurves,andtheiteratedintegralsexist.,TheproofofFubinistheoremistoodifficulttoincludeInourclass.,Iff(x,y)0,thenwecaninterpretthedoubleintegral,asthevolumeVofthesolidSthatliesabove,Randunderthesurfacez=f(x,y).,So,Or,Example,Solution,Example,Solution,Example,Solution,Specially,If,Then,SomeexamplesoftypeI,SomeexamplesoftypeII,Example4,Findthevolumeofthesolidenclosed,bytheparaboloidandtheplanes,Solution,andaboveregion,Thesolidliesundertheparaboloid,Sothevolumeis,SupposethatDisaboundedregion,thedoubleintegraloffoverDis,15.3DoubleIntegralsoverGeneralRegions,SupposethatDisaboundedregionwhichcanbeenclosedinarectangularregionR.,AnewfunctionFwithdomainR:,IftheintegralofFexistsoverR,thenwedefinethedoubleintegraloffoverDby,SomeexamplesoftypeI,EvaluatewhereDisaregionoftypeI,AnewfunctionFwithdomainR:,IffiscontinuousontypeIregionDsuchthat,then,SomeexamplesoftypeII,IffiscontinuousontypeIIregionDsuchthat,then,Example1,Solution,TypeI,TypeII,PropertiesofDoubleIntegralSupposethatfunctionsfandgarecontinuousonaboundedclosedregionD.Property1Thedoubleintegralofthesum(ordifference)oftwofunctionsexistsandisequaltothesum(ordifference)oftheirdoubleintegrals,thatis,Property2Property3whereDisdividedintotworegionsD1andD2andtheareaofD1D2is0.,Property4Iff(x,y)0forevery(x,y)D,thenProperty5Iff(x,y)g(x,y)forevery(x,y)D,thenMoreover,sinceitfollowsfromProperty5thathence,whereSistheareaofD.,Property6,Property7SupposethatMandmarerespectivelythemaximumandminimumvaluesoffunctionfonD,thenwhereSistheareaofD.Property8(TheMeanValueTheoremforDoubleIntegral)Iff(x,y)iscontinuousonD,thenthereexistsatleastapoint(,)inDsuchthatwhereSistheareaofD.f(,)iscalledtheaverageValueoffonD,Example2,Solution,TypeII,TypeI,Example3,Solution,TypeI,TypeII,Examplechangetheorderofintegration,solution:,Wehave,AnalternativedescriptionofDis,Examplechangetheorderofintegration,solution:,ExampleProvethat,Solution,AnalternativedescriptionofDis,where,Wehave,So,Chapter10ParametricEquationsandPolarCoordinates10.3Polarcoordinates,10.3Polarcoordinates,ThepointoiscalledthepoleThepointPisrepresentedbytheorderedpair(r,)andr,arecall-edpolarcoordinatesofPispositiveifmeasureinthecou-nterclockwisedirectionfromthepo-laraxisandnegativeintheclockwi-sedirection,TheconnectionbetweenpolarandCartesiancoordinates,ExampleConvertthepointfrompolartoCartesiancoordinates,Solution,ExampleRepresentthepointwithCartesiancoordinates,Solution,intermsofpolarcoordinates.,ExampleIdentifythecurvebyfindingaCartesianequationforthecurve,Solution,ExampleFindapolarequationforthecurverepresentedbythegivenCartesianequation,Solution,Chapter15MultipleIntegrals15.1DoubleIntegralsoverRectangles15.2IteratedIntegrals15.3DoubleIntegralsoverGeneralRegions15.4DoubleIntegralsinpolarcoordinates15.5*ApplicationsofDoubleIntegrals15.6*SurfaceArea,15.4DoubleIntegralsinpolarcoordinates,Apolarrectangle,where,The“center”ofthepolarsubrectangle,haspolarcoordinates,Theareaofis,Changetopolarcoordinateinadoubleintegral,IffiscontinuousonapolarrectangleRgivenby,where,then,Solution,1.Iffiscontinuousonapolarregionoftheformthen,2.Iffiscontinuousonapolarregionoftheformthen,3.Iffiscontinuousonapolarregionoftheformthen,Solution:,ExampleFind,。,Disgivenby,So,ExampleEvaluate,,Solution,Wehave,ImproperIntegral(overtheentireplane),whereisthediskwithradiusandcentertheorigin.,whereisthesquarewithvertics.,Example,15.7TripleIntegrals,fisdefindontherectanglarboxB,DefinitionThetripleintegraloffovertheboxBis,ifthislimitexists.,isintegralonB,Theorem1.,FubinistheoremIffiscontinuousontherectanglar,then,boxB,Example,Evaluatethetripleintegral,WhereBistherectangularboxgivenby,Solution,ThetripleintegraloverageneralboundedregionEinthree-dimensionalspace,AsolidregionEissaidtobeoftypeIif,then,IftheprojectionDofEontothexy-planeisatypeIplaneregion,then,then,IftheprojectionDofEontothexy-planeisatypeIIplaneregion,Example,Evaluate,whereEisthesolid,tetrahedronboundedbythefourplanes,and,tetrhi:drn,Solution,Wehave,itisatypeIregion.,15.8TripleIntegralsinCylindricalandSphericalCoodinates,1.CylindricalCoodinates,If,whereDisgiveninpolarcoordinatesby,then,Example,AsolidElieswithinthecylinder,belowtheplane,Solution,abovetheparaboloid,Thedensityatanypointisproportional,toitsdistancefromtheaxisofthecylinder.,FindthemassofE.,Wehave,Sincethedensityatanypointisproportional,toitsdistancefromthez-axis,thedensityfunctionis,wherekistheproportionalityconstant.Therefore,themassis,Example,Evaluatetheintegralbychangingtocylindricalcoordinates.,Solution,Thesolidregionhasamuchsimplerdescriptionincylindricalcoordinates:,Thesolidregionis,2.SphericalCoodinates,whereEisasphericalwedgegivenby,IfEisageneralsphericalregionsuchas,then,Example,Evaluatetheintegralbychangingtosphericalcoordinates.,Solution,Thesolidregionhasamuchsimplerdescriptioninsphericalcoordinates:,Thesolidregionis,Example,Usesphericalcoordinatestofindthevolume,Solution,ThevolumeofEis,Thesolidis,ofthesolidthatliesabovetheconeand,belowthesphere,15.9ChangeofVariablesinMutipleIntegrals,AtransformationTfromtheuv-planetothexy-plane,where,or,Tisatransformation,whichmeansthatandhavecontinuousfirst-orderpartialderivatives.,AtransformationTisafunctionwhosedomanandrangearebothsubsetsofIfthenthepointiscalledtheimageofthepointIfnotwopointshavethesameimage,Tiscalledone-to-one.,AtransformationTonaregionSintheuv-plane.,TtransformsSintoaregionRinthexy-planecalledtheimageofS,consistingoftheimagesofallpointsinS.,IfTisone-to-onetransformation,thenithasaninversetransformationfromthexy-planetotheuv-plane.,Example,Atransformationisdefinedby,Sisthetriangularregionwithvertices,Solution,Thetransformatonmapstheboundaryof,Si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合成孔径激光雷达技术:原理、发展与挑战
- 合作学习:开启大学英语自主学习的新钥匙
- 民政局发布离婚协议书范本及财产分割原则说明
- 原生大红紫薇苗木采购合同2篇
- 民警演讲面试题库及答案
- 教师招聘之《小学教师招聘》考试历年机考真题集含答案详解【能力提升】
- 2025呼伦贝尔农垦集团有限公司校园招聘44人笔试模拟及答案详解(新)
- 2025内蒙古呼伦贝尔农垦谢尔塔拉农牧场有限公司调整部分岗位报考专业要求笔试模拟及完整答案详解一套
- 教师招聘之《小学教师招聘》能力测试备考题含答案详解【培优】
- 2025年教师招聘之《幼儿教师招聘》考前冲刺模拟题库附答案详解【黄金题型】
- 2025-2026学年人美版(2024)小学美术二年级上册教学计划及进度表
- 歌乐山下的英烈课件
- 涉警舆情应对课件
- 2025年四川省凉山彝族自治州中考道德与法治真题及答案
- (2025年标准)赛事承办协议书
- 美术绘本创作教学课件
- 2025无犯罪记录证明申请表申请书(模板)
- GB/T 7031-2025机械振动道路路面谱测量数据的报告
- 新材料研发开发合同
- 矿山支护工培训课件
- 品质红线管理办法
评论
0/150
提交评论