已阅读5页,还剩90页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter15MultipleIntegrals15.1DoubleIntegralsoverRectangles15.2IteratedIntegrals15.3DoubleIntegralsoverGeneralRegions15.4DoubleIntegralsinpolarcoordinates15.5*ApplicationsofDoubleIntegrals15.6*SurfaceArea,15.1DoubleIntegralsoverRectangles,VolumesandDoubleIntegrals,Afunctionfoftwovariablesdefinedonaclosedrectangle,andwesupposethat,Thegraphoffisasurfacewithequation,LetSbethesolidthatliesaboveRandunderthegraphoff,thatis,(SeeFigure1)FindthevolumeofS,Figure1,1)Partition:,ThefirststepistodividetherectangleRintosubrectangles.,Eachwitharea,2)Approximation:,Athinrectangularbox:,Base:,Height:,Wecanapproximateby,3)Sum:,4)Limit:,AdoubleRiemannsum,DefinitionThedoubleintegraloffovertherectangleRis,ifthislimitexists.,Thesufficientconditionofintegrability:,isintegralonR,Theorem1.,Theorem2.,andfisdiscontinuousonlyonafinitenumberofsmoothcurves,isintegralon,Note,IfthenthevolumeVofthesolidthat,liesabovethatthesurfaceis,Example1,If,evaluatetheintegral,Solution,15.2IteratedIntegrals,Partialintegrationwithrespecttoydefinesafunctionofx:,WeintegrateAwithrespecttoxfromx=atox=b,weget,Theintegralontherightsideiscalledaniteratedintegralandisdenotedby,Thus,Similarly,FubinistheoremIffiscontinuousontherectangle,then,Moregenerally,thisistruethatweassumethatfisboundedonR,fisdiscontinuousonlyonafinitenumberofsmoothcurves,andtheiteratedintegralsexist.,TheproofofFubinistheoremistoodifficulttoincludeInourclass.,Iff(x,y)0,thenwecaninterpretthedoubleintegral,asthevolumeVofthesolidSthatliesabove,Randunderthesurfacez=f(x,y).,So,Or,Example,Solution,Example,Solution,Example,Solution,Specially,If,Then,SomeexamplesoftypeI,SomeexamplesoftypeII,Example4,Findthevolumeofthesolidenclosed,bytheparaboloidandtheplanes,Solution,andaboveregion,Thesolidliesundertheparaboloid,Sothevolumeis,SupposethatDisaboundedregion,thedoubleintegraloffoverDis,15.3DoubleIntegralsoverGeneralRegions,SupposethatDisaboundedregionwhichcanbeenclosedinarectangularregionR.,AnewfunctionFwithdomainR:,IftheintegralofFexistsoverR,thenwedefinethedoubleintegraloffoverDby,SomeexamplesoftypeI,EvaluatewhereDisaregionoftypeI,AnewfunctionFwithdomainR:,IffiscontinuousontypeIregionDsuchthat,then,SomeexamplesoftypeII,IffiscontinuousontypeIIregionDsuchthat,then,Example1,Solution,TypeI,TypeII,PropertiesofDoubleIntegralSupposethatfunctionsfandgarecontinuousonaboundedclosedregionD.Property1Thedoubleintegralofthesum(ordifference)oftwofunctionsexistsandisequaltothesum(ordifference)oftheirdoubleintegrals,thatis,Property2Property3whereDisdividedintotworegionsD1andD2andtheareaofD1D2is0.,Property4Iff(x,y)0forevery(x,y)D,thenProperty5Iff(x,y)g(x,y)forevery(x,y)D,thenMoreover,sinceitfollowsfromProperty5thathence,whereSistheareaofD.,Property6,Property7SupposethatMandmarerespectivelythemaximumandminimumvaluesoffunctionfonD,thenwhereSistheareaofD.Property8(TheMeanValueTheoremforDoubleIntegral)Iff(x,y)iscontinuousonD,thenthereexistsatleastapoint(,)inDsuchthatwhereSistheareaofD.f(,)iscalledtheaverageValueoffonD,Example2,Solution,TypeII,TypeI,Example3,Solution,TypeI,TypeII,Examplechangetheorderofintegration,solution:,Wehave,AnalternativedescriptionofDis,Examplechangetheorderofintegration,solution:,ExampleProvethat,Solution,AnalternativedescriptionofDis,where,Wehave,So,Chapter10ParametricEquationsandPolarCoordinates10.3Polarcoordinates,10.3Polarcoordinates,ThepointoiscalledthepoleThepointPisrepresentedbytheorderedpair(r,)andr,arecall-edpolarcoordinatesofPispositiveifmeasureinthecou-nterclockwisedirectionfromthepo-laraxisandnegativeintheclockwi-sedirection,TheconnectionbetweenpolarandCartesiancoordinates,ExampleConvertthepointfrompolartoCartesiancoordinates,Solution,ExampleRepresentthepointwithCartesiancoordinates,Solution,intermsofpolarcoordinates.,ExampleIdentifythecurvebyfindingaCartesianequationforthecurve,Solution,ExampleFindapolarequationforthecurverepresentedbythegivenCartesianequation,Solution,Chapter15MultipleIntegrals15.1DoubleIntegralsoverRectangles15.2IteratedIntegrals15.3DoubleIntegralsoverGeneralRegions15.4DoubleIntegralsinpolarcoordinates15.5*ApplicationsofDoubleIntegrals15.6*SurfaceArea,15.4DoubleIntegralsinpolarcoordinates,Apolarrectangle,where,The“center”ofthepolarsubrectangle,haspolarcoordinates,Theareaofis,Changetopolarcoordinateinadoubleintegral,IffiscontinuousonapolarrectangleRgivenby,where,then,Solution,1.Iffiscontinuousonapolarregionoftheformthen,2.Iffiscontinuousonapolarregionoftheformthen,3.Iffiscontinuousonapolarregionoftheformthen,Solution:,ExampleFind,。,Disgivenby,So,ExampleEvaluate,,Solution,Wehave,ImproperIntegral(overtheentireplane),whereisthediskwithradiusandcentertheorigin.,whereisthesquarewithvertics.,Example,15.7TripleIntegrals,fisdefindontherectanglarboxB,DefinitionThetripleintegraloffovertheboxBis,ifthislimitexists.,isintegralonB,Theorem1.,FubinistheoremIffiscontinuousontherectanglar,then,boxB,Example,Evaluatethetripleintegral,WhereBistherectangularboxgivenby,Solution,ThetripleintegraloverageneralboundedregionEinthree-dimensionalspace,AsolidregionEissaidtobeoftypeIif,then,IftheprojectionDofEontothexy-planeisatypeIplaneregion,then,then,IftheprojectionDofEontothexy-planeisatypeIIplaneregion,Example,Evaluate,whereEisthesolid,tetrahedronboundedbythefourplanes,and,tetrhi:drn,Solution,Wehave,itisatypeIregion.,15.8TripleIntegralsinCylindricalandSphericalCoodinates,1.CylindricalCoodinates,If,whereDisgiveninpolarcoordinatesby,then,Example,AsolidElieswithinthecylinder,belowtheplane,Solution,abovetheparaboloid,Thedensityatanypointisproportional,toitsdistancefromtheaxisofthecylinder.,FindthemassofE.,Wehave,Sincethedensityatanypointisproportional,toitsdistancefromthez-axis,thedensityfunctionis,wherekistheproportionalityconstant.Therefore,themassis,Example,Evaluatetheintegralbychangingtocylindricalcoordinates.,Solution,Thesolidregionhasamuchsimplerdescriptionincylindricalcoordinates:,Thesolidregionis,2.SphericalCoodinates,whereEisasphericalwedgegivenby,IfEisageneralsphericalregionsuchas,then,Example,Evaluatetheintegralbychangingtosphericalcoordinates.,Solution,Thesolidregionhasamuchsimplerdescriptioninsphericalcoordinates:,Thesolidregionis,Example,Usesphericalcoordinatestofindthevolume,Solution,ThevolumeofEis,Thesolidis,ofthesolidthatliesabovetheconeand,belowthesphere,15.9ChangeofVariablesinMutipleIntegrals,AtransformationTfromtheuv-planetothexy-plane,where,or,Tisatransformation,whichmeansthatandhavecontinuousfirst-orderpartialderivatives.,AtransformationTisafunctionwhosedomanandrangearebothsubsetsofIfthenthepointiscalledtheimageofthepointIfnotwopointshavethesameimage,Tiscalledone-to-one.,AtransformationTonaregionSintheuv-plane.,TtransformsSintoaregionRinthexy-planecalledtheimageofS,consistingoftheimagesofallpointsinS.,IfTisone-to-onetransformation,thenithasaninversetransformationfromthexy-planetotheuv-plane.,Example,Atransformationisdefinedby,Sisthetriangularregionwithvertices,Solution,Thetransformatonmapstheboundaryof,Si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷压制成型工安全操作评优考核试卷含答案
- 丁辛醇装置操作工变更管理强化考核试卷含答案
- 硬质合金混合料制备工持续改进模拟考核试卷含答案
- 薪酬岗位工作规划
- 抚育管护合同范本
- 转交协议租赁合同
- 转手装修合同协议
- 养殖采购合同范本
- 钻井工农合同范本
- 新房过户合同范本
- 2026年中国人民银行直属事业单位招聘(60人)备考题库带答案解析
- 企业年终财务部年终总结
- 2026中储粮集团公司西安分公司招聘(43人)笔试考试参考试题及答案解析
- 2025年全国防汛抗旱知识竞赛培训试题附答案
- 2025年秋季学期国家开放大学《理工英语4》形考任务综合测试完整答案(不含听力部分)
- 2025四川省现代种业发展集团有限公司部分权属企业社会化招聘13人备考题库附答案详解ab卷
- (2025)交管12123驾照学法减分题库附含答案
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及答案详解(新)
- 后勤工作人员协议书
- DBJ50-T-200-2024 建筑桩基础技术标准
- 保洁员培训资料大全
评论
0/150
提交评论