




文档简介
Archive of Applied Mechanics 61 (1991) 523-531 Archive of Applied Mechanics ?9 Springer-Verlag 1991 Dynamic investigations o loads on gear teeth in single gear transmission W. Nadolski, Warsaw Summary: In the paper a discrete-continuous model for the analysis of dynamic loads on gear teeth of a single gear transmission is proposed. In this model a constant equivalent mesh stiffness and ponderable shafts deformed by torsion are taken into account. In the discussion a wave method is applied which utili- zes the wave solution of the equations of motion. Numerical calculations are concentrated on the determina- tion of amplitudes for dynamic loads on gear teeth with respect to frequencies of external excitation in the first and second resonant regions. Untersuchung der dynamischen Zahnbelastung in einstufigen Getrieben Tbersicht: Zur Untersuchung der dynamischen Zahnbeanspruchung in einstufigen Getrieben wird ein )lodell aus diskreten und kontinuierlichen Massen mit einer konstanten, quivalcnten Zahneingriffssteifigkeit und massebehafteten, tordierbaren Wellen vorgeschlagcn. Die Bewegungsgleichungen werden durch einen Wellenfunktionsansatz gel5st. Numerische Berechnungen werden vorwiegend ffir die Amplituden der Zahn- belastnng bei einer nieren Erregung im Bereich der ersten und zweiten Resonanz durchgeffihrt. 1 Introduction In 1, 2 dynamic investigations were performed for the discrete-continuous model of a single gear transmission with rigid gear teeth. In the present paper a similar model is considered, how- ever the mating gears have such profiles of teeth that their equivalent stiffness can be assumed to be constant 3- 6. In the technical literature gear transmissions are mostly analyzed by means of discrete models of one and multi-degrees of freedom 7, 8. In the present paper a discrete-continuous model consists of two ponderable shafts and four rigid bodies with constant mass moments of inertia with respect to the axis of rotation. Those gear transmissions are considered where supporting bearings eliminate deformations due to bending and where the shafts are mainly torsionally deformed. The rigid body at the input is loaded by an external moment which may be arbitrary. Damping is taken into account by means of an equivalent external damping of the viscous type and an equivalent internal damping of the Voigt type. In the considerations a method utilizing the wave solution of the equations of motion is applied. This method enables the determination of dynamics loads on gear teeth, displacements, strains and velocities in steady as well as in transient states. Numerical calculations for selected parameters describing various mechanical properties of the single gear transmission are concen- trated on the determination of amplitudes of dynamic loads on gear teeth with respect to fre- quencies of the external excitation in the first and second resonant regions. 2 Assumptions and governing equations Consider the discrete-continuous model of a single gear transmission with parallel axes, Fig. 1. The ponderable shafts 1 and 2 are characterized by the shear modulus G, the polar moment of inertia Ii, the density and the length li (i = 1, 2). The mass moments of inertia of gears 4, 5 and 39* 524 Archive of Applied Mechanics 61 (199i) M(t) J, Rz. u 5 I ! () = M() + rgl() + rq;(), rg;( + 2) + rl0g;( + 2) + rlg( + 2) + n/;() + r/() (11) = rJ;() + rlJ;() + rlA() + r7() + rly(), ! rlJ2(z) -I- r2o/(z) -b r2/2(z) q- r2291(z q- 2) q- r23gl(z -q- 2) II t ! = r24q2 (z) q- rg(z) + rq(z) q- re7/(z) -q- r:s/(z ) where rl = I + AKeDz, re = A(Ke + DI), rz = AKD.e - 1, r4 =A6(K-D,), r = l + K1D1, r = K1 + Dsl, r7 = KIDI - 1, r s = K1 - Dzl, r = 1 + AK1DI, ro = A(K1 + D41 q- Cm), rll - A4Km, r12 = -ANCm, r3 = -ANKm, rl = AKD - 1, r = A(KI - DI - Cm), r - -rll , (12) r17 : -r12, rlS : -rla, rl 9 : AsK2D22 + 1, r2o = A(K2 + D51 + N2Cm), r21 : AN2K, r2 : -AsNCm, r23 : -AsNKm, r2 : AK2D2 - 1, r5 : A(K2 - D51 - NZCm), r26 : -r21, r27 : -r22, r8 : -r%. The differential equations (11) can be solved by means of the finite difference method. The functions/1,/2, g are determined from (11) for z 0 and the function gl for z : z + 2 0. The functions/i, gi are identical to zero for negative arguments, so from (11)3 it follows that g,(z2) 0 for z2 : z + 2 2. Though the functions/2(z) and gl(z + 2) are not independent, the method of finite differences enables to derive expressions for these functions in dependence on known values of appropriate functions. These expressions are given in the Appendix. 0o = 1 rad, non-dimensional ll = 12 = 1, 3 5Iumerieal results In the numerical calculations the following parameters of the single gear transmission are assumed : dimensional 11 =12 =0.25m, /5 =0.16m, J3- 1.5kgm z, (13) e = 3200m/s, =0.8.104kg/m3; K1 =0.013, K2 - 0.06627, A4 =5, A 6 =0.15, N =4/3, =r/9. The analysis includes the following non-dimensional mesh stiffness Km= 0.005 859, 0.018528, 0.05859, (in dimensions: l0 s 2/m, / 10 s N/m, 109 N/m) for the tooth length equal to 0.10 m, and the coefficient of mesh damping Cm = DI, 9-11. W. Nadolski: Dynamic investigations of loads on gear teeth in single gear transmission 527 01-NO 2 O.,-N2 10 -6 4O 30 20 10 Dil =0.01 0.05 - 0,4r . . . . . . 01-N0 0.1 0.01 /X J, o.o 0.2 0.4 0.6 p Fig. 2. Amplitude-frequency. curves of the functions 01 - NO2 and 01 - JT02 The function of the external moment M(t) can be arbitrary, i.e. irregular or regular, periodic or nonperiodie. Here it is assumed in the form M(t) = a sin (pt) (1r where a = 10 6, and p is a non-dimensional external frequency. The considerations focus on the determination of amplitudes of dynamic loads on gear teeth with respect to frequencies of external excitation in the steady states for the first and second resonant regions. The dynamic load P expressed by (2) depends on the relative displacements 01 (1, t) - N02(1, t), the relative velocities 01(1, t) - N02(1, t), and on the coefficients Kin, Urn. The effect of damping on 01 - 2V02, 01 - N02, and the effect of Km and Cm on the load P is shown in Figs. 2, 3 and 4. The amplitude-frequency curves for the relative displacements 01(1, t) -N02(1, t) (conti- nuous lines) and for the relative velocities 01(1, t) - N02(1, t) (dotted lines) presented in Fig. 2 are obtained using (11) with the parameters (13), and for the additional parameters Km =0.018528, C = 0, Dil =0,0.01,0.05,0.1 (i =3,4,5,6), (15) Di = 0, 0.01, 0.05 (i = 1, 2). It appeared that the effect of external damping on the studied functions was appreciable, but the effect of internal damping was rather insignificant. Each curve in Fig. 2 for fixed Dil corresponds to the three values of the coefficients Di2, so an effect of internal damping is not observed. Fur- ther numerical calculations are performed for coefficients of internal damping DI2 = D22 = 0.01, and for coefficients of external damping Dil = 0.05 (i = 3, 4, 5, 6). From Fig. 3 where the dia- grams of amplitudes PA of dynamic loads for the equivalent mesh stiffness Km= 0.005 859, 0.018528, 0.05859 and C = 0 are plotted it follows that the curves are regular, namely, in the first resonant region the maximum amplitude of the load increases with increase of K. The am- plitude-frequency curves for the dynamic loads shown in Figs. 4, 5, 6, 7 and 9 are obtained only for Km= 0.018528. 528 (z) + 8A(z), gl(z2) and/2(z) are expressed as follows $385 -SsS6 $3S4 -S2Se el(z) - h(z) - $1S5 -SsS4 SsS -$1S5 W. Nadolski: Dynamic investigations of loads on gear teeth in single gear transmission 531 References 1. Nadolski, W.: Application of wave method in investigations of single gear transmission. Ing. Arch. 58 (1988) 329-333 2. Nadolski, W. : Dynamic investigations of single gear transmission taking into account microcracks. Ing. Arch. 59 (1989) 362-370 3. Fronius, S. : tdber die Normung eines Berechnungsverfahrens ffir Zahnrider. Maschinenbautechnik 9 (1959) 216-221 4. Frenkel, 7. N.: Eksperimentalnoje opredelenije summarnoj deformaeii i estkosti prjamych zubjev eilindri6eskich zub6atyeh koles. Sb. ZubSatyje i ezervjaSnyje pereda6i. Magis, 1959 (in Russian) 163- 184. Frenkel, I. N. : Experimental determination of overall deformation and stiffness of gears with spur toothing (in Russian). In: Ed. Toothed wheelsand worm gears, pp. 163-184. Moscow: Magis 1959 5. Mark, W. D.: Analysis of the vibratory excitation of gear systems, I: Basic theory. J. Acoust. See. 63 (1978) 1408-1430 6. Mark, W. D.: Analysis of the vibratory excitation of gear systems, Ih Tooth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保设备公司离职员工环保技术秘密保密合同
- 签订合同附加协议书:电子商务平台合作服务补充协议
- 2025年合同无效及其不可撤销担保书的法律后果评估
- 2025浙江省土地征用合同范本
- 2025年济宁化学模拟考试试题及答案
- 2025年中国高尔夫球袋行业市场全景分析及前景机遇研判报告
- 2025年中国智能电网行业市场前瞻:能源大数据在智能电网中的应用报告
- 2025年陕西一模化学试卷及答案
- 2025年智能运动监测:智能可穿戴设备跌倒检测技术革新亮点
- 2025年智能语音情感识别在客服系统中的技术创新报告
- 红领巾观察题目及答案
- 江西省第二届职业技能大赛智慧安防技术赛项-模块B-公开样题
- CJ/T 528-2018游泳池除湿热回收热泵
- 化工工艺报警管理制度
- 2023-2024学年江苏省苏州市高三(上)期初调研物理试题及答案
- T/CSWSL 021-2020饲料原料大豆酶解蛋白
- 银行承兑转让协议书
- 《水利工程生产安全重大事故隐患清单指南》解读与培训
- 浙江省杭州市2025年八年级下学期语文期末试卷及答案
- 2025-2030年中国四轮定位仪行业市场现状供需分析及投资评估规划分析研究报告
- 小学生网络安全知识课件
评论
0/150
提交评论