




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等腰三角形,教学目标:1.了解等腰三角形的概念。2.探索并证明等腰三角形的性质定理。教学重点:探索并证明等腰三角形的性质定理。教学难点:等腰三角形“三线合一”的性质。,动手做一做,ABC有什么特点?,看一看,有两条边相等的三角形叫做等腰三角形.,等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.,底边,概念,1、等腰三角形一腰为3cm,底为4cm,则它的周长是;2、等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是;3、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。,10cm,10cm或11cm,19cm,小试牛刀,等腰三角形是轴对称图形吗?,思考,是,等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。,A,C,B,D,ABAC,BDCD,ADAD,BC,BADCAD,ADBADC,等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?,大胆猜想,猜想与论证,等腰三角形的两个底角相等。,已知:ABC中,AB=AC,求证:B=C,分析:1.如何证明两个角相等?,2.如何构造两个全等的三角形?,猜想,则有12,D,1,2,在ABD和ACD中,证明:作顶角的平分线AD,,ABAC,12,ADAD,(公共边),ABDACD,(SAS),BC,(全等三角形对应角相等),方法一,则有BDCD,D,在ABD和ACD中,证明:作ABC的中线AD,ABAC,BDCD,ADAD,(公共边),ABDACD,(SSS),BC,(全等三角形对应角相等),方法二,则有ADBADC90,D,在RtABD和RtACD中,证明:作ABC的高线AD,ABAC,ADAD,(公共边),RtABDRtACD,(HL),BC,(全等三角形对应角相等),方法三,猜想与论证,等腰三角形的两个底角相等。,已知:ABC中,AB=AC,求证:B=C,分析:1.如何证明两个角相等?,2.如何构造两个全等的三角形?,性质1,(等边对等角),猜想,等腰三角形一个底角为75,它的另外两个角为_;等腰三角形一个角为70,它的另外两个角为_;等腰三角形一个角为110,它的另外两个角为_。,75,30,70,40或55,55,35,35,小试牛刀,想一想:,刚才的证明除了能得到BC你还能发现什么?,A,B,D,C,ABAC,BDCD,ADAD,BC.,BADCAD,ADBADC,=90,等腰三角形顶角的平分线平分底边并且垂直于底边.,性质2,(等腰三角形三线合一),练习:选一选:,1.(13年钦州)等腰三角形的一个角是80,则它的顶角度数是()A.80B.80或20C.80或50D.202.(13年南充)在ABC中,AB=AC,B=70,则A=()A.70B.55C.50D.403.已知等腰三角形的一个内角为70,则另外两个内角的度数是()A.55,55B.70,40C.55,55,或70,40D.以上都不对,如图:ABC中,AB=AC。(1)若AD平分BAC,则BDA=,BD=。(2)若BD=CD,则AD平分,ADC=(3)若ADBC,则BAD=,BC=2(),动手做一做,A,B,C,D,如图,三角形ABC中,AC=BC,CD是ACB的平分线,AD=4cm,求AB的长及CDB的大小。,C,A,B,D,轴对称图形,两个底角相等,简称“等边对等角”,顶角平分线、底边上的中线、和底边上的高互相重合,简称“三线合一”,等腰三角形,小结,性质1:等腰三角形的两个底角相等,(简称“等边对等角”,前提是在同一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省三支一扶招聘考试模拟试卷及1套参考答案详解
- 2025江苏苏州工业园区教育局组织开展西安地区校园招聘的模拟试卷参考答案详解
- 2025福建漳州市诏安县财政投资评审中心招募见习人员1人模拟试卷及答案详解(典优)
- 2025广东东莞麻涌镇人力资源服务有限公司招聘7人模拟试卷及一套完整答案详解
- 2025广东深圳市罗山科技园开发运营服务有限公司高校应届毕业生招聘拟聘考前自测高频考点模拟试题有完整答案详解
- 2025江西南昌市劳动保障事务代理中心招聘劳务派遣人员6人模拟试卷附答案详解(典型题)
- 2025福建南平事业单位招聘工作人员笔试未达开考比例及核减岗位招聘数情况模拟试卷附答案详解(黄金题型)
- HO-PEG-AS-MW-3400-生命科学试剂-MCE
- 2025昆明市盘龙区面向全国引进高中教育管理人才考前自测高频考点模拟试题及一套参考答案详解
- 小学劳动安全培训内容课件
- 创伤记忆的集体性遗忘-洞察及研究
- 浙江科技大学《高等数学Ⅱ》2025-2026学年期末试卷(A卷)
- 13 唐诗五首《钱塘湖春行》课件
- (高清版)DB11∕T 2456-2025 消防安全管理人员能力评价规范
- 胎心监护及并发症处理
- 锁骨骨折术后护理
- 酒店餐饮部主管考试题库
- 产业策划投标方案(3篇)
- 眼科常见疾病及其用药
- 脑疝患者的急救及护理
- 2025年广西专业技术人员继续教育公需科目(一)答案
评论
0/150
提交评论