




已阅读5页,还剩58页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
fundamentalsofcontrolengineeringlecture3feiyunxuemail:fyxu,机械工程测试与控制技术,chapter2:mathematicalmodelsofsystems,2.4thelaplacetransformanditsinversetransform,laplacetransformanditsinversetransform,chapter2:mathematicalmodelsofsystems,theinverselaplacetransformforthefunctionf(s)is:,chapter2:mathematicalmodelsofsystems,laplacetransformofsometypicalfunctions,theunitstepfunction,chapter2:mathematicalmodelsofsystems,theunitrampfunction,chapter2:mathematicalmodelsofsystems,theunitparabolicfunction,chapter2:mathematicalmodelsofsystems,theunitimpulsefunction,chapter2:mathematicalmodelsofsystems,thedampingexponentialfunction,(aisconstant),chapter2:mathematicalmodelsofsystems,thesineandcosinefunction,byeulerfomula:,chapter2:mathematicalmodelsofsystems,therefore:,similarly:,chapter2:mathematicalmodelsofsystems,propertiesoflaplacetransform,linearity,chapter2:mathematicalmodelsofsystems,realdifferentialtheorem,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,thismeansthelaplacevariablescanbeconsideredasadifferentialoperator.,chapter2:mathematicalmodelsofsystems,integraltheorem,if,integraloperator,chapter2:mathematicalmodelsofsystems,delaytheorem,providedthatf(t)=0whilet0,exists,chapter2:mathematicalmodelsofsystems,translationaltheorem,initialvaluetheorem,chapter2:mathematicalmodelsofsystems,finalvaluetheorem,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,convolutiontheorem,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,scaletransform,example:,chapter2:mathematicalmodelsofsystems,findtheinverselaplacetransformwithpartialfractionexpansion,partialfractionexpansion,iff(s)=f1(s)+f2(s)+fn(s),chapter2:mathematicalmodelsofsystems,incontrolengineering,f(s)canbewrittenas:,where-p1,-p2,-pnaretherootsofthecharacteristicequationa(s)=0,i.e.thepolesoff(s).ci=bi/a0(i=0,1,m),chapter2:mathematicalmodelsofsystems,partialfractionexpansionforf(s)withdifferentrealpoles,wheretheconstantcoefficientsaiarecalledresiduesatthepoles=-pi.,therefore:,howtofindthecoefficientsai?,chapter2:mathematicalmodelsofsystems,example1:findtheinverselaplacetransform,chapter2:mathematicalmodelsofsystems,i.e.,chapter2:mathematicalmodelsofsystems,partialfractionexpansionforf(s)withcomplexpoles,supposingf(s)onlyhasonepairofconjugatedcomplexpoles-p1and-p2,andtheotherpolesaredifferentrealpoles.then,where,chapter2:mathematicalmodelsofsystems,or:,wherea1anda2canbecalculatedwiththefollowingequation.,chapter2:mathematicalmodelsofsystems,example2:findtheinverselaplacetransform,given,chapter2:mathematicalmodelsofsystems,i.e.,chapter2:mathematicalmodelsofsystems,therefore,chapter2:mathematicalmodelsofsystems,finally,theinverselaplacetransformwillbe:,chapter2:mathematicalmodelsofsystems,partialfractionexpansionforf(s)withrepeatedpoles,supposingf(s)onlyhasar-orderrepeatedpole-p0,wherethecoefficientsar+1,ancanbefoundwiththeforenamedsinglepoleresiduemethod.,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,therefore,fromthelaplacetransformtable,weobtain,chapter2:mathematicalmodelsofsystems,example3:findtheinverselaplacetransform,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,usinglaplacetransformtosolvethedifferentialequations,imagefunctionofoutputins-domain,algebraicequationins-domain,chapter2:mathematicalmodelsofsystems,example5:solvingadifferentialequationwithlaplacetransform,chapter2:mathematicalmodelsofsystems,dothelaplacetransformtotheleft-handofthedifferentialequation,wehave,i.e.,chapter2:mathematicalmodelsofsystems,sinceweobtain,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,therefore:,fromthelaplacetransformtable,weobtain,chapter2:mathematicalmodelsofsystems,comments:,thefinalsolutionofadifferentialequationisobtaineddirectlywithlaplacetransformmethod.noneedforfindingthegeneralandtheparticularsolutionofthedifferentialequation.,iftheinitialconditionsiszero,thetransformedalgebraicequationins-domaincanbegottensimplywithreplacingthedn/dtnoperatorwithvariablesn.,chapter2:mathematicalmodelsofsystems,notethattheoutputresponsex0(s)includestwoparts:theforcedresponsedeterminedbytheinputandthenaturalresponsedeterminedbytheinitialconditions.,chapter2:mathematicalmodelsofsystems,obviously,thetransientresponseofthesystemwillbedecreasedtozerowithtimet.,chapter2:mathematicalmodelsofsystems,2.5thetransferfunctionoflinearsystems,transferfunction,thetransferfunctionofalinearsystemisdefinedastheratioofthelaplacetransformoftheoutputvariabletothelaplacetransformoftheinputvariable,withallinitialconditionsassumedtobezero.,thesystemisinsteady-state,i.e.outputvariableanditsderivativeofallorderareequaltozerowhilet0.,chapter2:mathematicalmodelsofsystems,example1:findingthetransferfunctionofthespring-mass-dampersystem,chapter2:mathematicalmodelsofsystems,example2:findingthetransferfunctionofanop-ampcircuit,i.e.,chapter2:mathematicalmodelsofsystems,example3:findingthetransferfunctionofatwo-massmechanicalsystem,chapter2:mathematicalmodelsofsystems,ifthetransferfunctionintermsofthepositionx1(t)ofmassm1isdesired,thenwehave,mini-test:pleasewritethedifferentialequationofthetwo-massmechanicalsystem.,chapter2:mathematicalmodelsofsystems,example4:transferfunctionofdcmotor,chapter2:mathematicalmodelsofsystems,thetransferfunctionofthedcmotorwillbedevelopedforalinearapproximationtoanactualmotor,andsecond-ordereffects,suchashysteresisandthevoltagedropacrossthebrushes,willbeneglected.,theair-gapfluxofthemotorisproportionaltothefieldcurrent,providedthefieldisunsaturated,sothat,thetorquedevelopedbythemotorisassumedtoberelatedlinearlytoandthearmaturecurrentasfollows:,chapter2:mathematicalmodelsofsystems,fieldcurrentcontrolleddcmotor(ia=iaisconstant),wherekmisdefinedasthemotorconstant.,thefieldcurrentisrelatedtothefieldvoltageas,chapter2:mathematicalmodelsofsystems,theloadtorqueforrotatinginertiaasshowninthefigureiswrittenas,thereforethetransferfunctionofthemotorloadcombination,withtd(s)=0,is,chapter2:mathematicalmodelsofsystems,armaturecurrentcontrolleddcmotor(if=ifisconstant),thearmaturecurrentisrelatedtotheinputvoltageappliedtothearmatureas,wherevb(s)isthebackelectromotive-forcevoltageproportionaltothemotorspeed.thereforewehave:,chapter2:mathematicalmodelsofsystems,thearmaturecurrentis,thereforethetransferfunctionofthemotorloadcombination,withtd(s)=0,is,chapter2:mathematicalmodelsofsystems,rangeofcontrolresponsetimeandpowertoloadforelectro-mechanicalandelectrohydraulicdevices.,chapter2:mathematicalmodelsofsystems,generalformoftransferfunction,chapter2:mathematicalmodelsofsystems,remarks,thetransferfunctionofasystem(orelement)representsthere
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水利水电工程现场勘察试题及答案
- 提升城市建设项目的试题及答案
- 中级经济师考试的相关政策与法规试题及答案
- 信息技术网络安全知识测试卷
- 化工原理与工艺实践知识题
- 工程经济管理效率分析试题及答案
- 2025年建设项目的投资分析试题及答案
- 行政管理公共关系的数字化转型题及答案
- 精优复习水利水电工程考试试题及答案
- 经济收入说明及税收减免资格声明书(6篇)
- 2022年中国热带农业科学院分析测试中心高层次人才及博士招聘笔试备考题库及答案解析
- 闪存存储技术应对大数据挑战
- 科普项目申报书-中国科协
- 食蚜蝇课件完整版
- 主题班会《中国梦我的梦》课件
- 义务教育数学新课程标准选择题题库测试卷精选450题(2022版)含答案
- 古诗词诵读《客至》-统编版高中语文选择性必修下册
- 建筑材料分类整理
- YY/T 0801.2-2010医用气体管道系统终端第2部分:用于麻醉气体净化系统的终端
- GB/T 31349-2014节能量测量和验证技术要求中央空调系统
- 武汉大学管理学全套课件龚丽敏老师版
评论
0/150
提交评论