现代控制教学PPT英语版.ppt_第1页
现代控制教学PPT英语版.ppt_第2页
现代控制教学PPT英语版.ppt_第3页
现代控制教学PPT英语版.ppt_第4页
现代控制教学PPT英语版.ppt_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

fundamentalsofcontrolengineeringlecture3feiyunxuemail:fyxu,机械工程测试与控制技术,chapter2:mathematicalmodelsofsystems,2.4thelaplacetransformanditsinversetransform,laplacetransformanditsinversetransform,chapter2:mathematicalmodelsofsystems,theinverselaplacetransformforthefunctionf(s)is:,chapter2:mathematicalmodelsofsystems,laplacetransformofsometypicalfunctions,theunitstepfunction,chapter2:mathematicalmodelsofsystems,theunitrampfunction,chapter2:mathematicalmodelsofsystems,theunitparabolicfunction,chapter2:mathematicalmodelsofsystems,theunitimpulsefunction,chapter2:mathematicalmodelsofsystems,thedampingexponentialfunction,(aisconstant),chapter2:mathematicalmodelsofsystems,thesineandcosinefunction,byeulerfomula:,chapter2:mathematicalmodelsofsystems,therefore:,similarly:,chapter2:mathematicalmodelsofsystems,propertiesoflaplacetransform,linearity,chapter2:mathematicalmodelsofsystems,realdifferentialtheorem,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,thismeansthelaplacevariablescanbeconsideredasadifferentialoperator.,chapter2:mathematicalmodelsofsystems,integraltheorem,if,integraloperator,chapter2:mathematicalmodelsofsystems,delaytheorem,providedthatf(t)=0whilet0,exists,chapter2:mathematicalmodelsofsystems,translationaltheorem,initialvaluetheorem,chapter2:mathematicalmodelsofsystems,finalvaluetheorem,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,convolutiontheorem,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,scaletransform,example:,chapter2:mathematicalmodelsofsystems,findtheinverselaplacetransformwithpartialfractionexpansion,partialfractionexpansion,iff(s)=f1(s)+f2(s)+fn(s),chapter2:mathematicalmodelsofsystems,incontrolengineering,f(s)canbewrittenas:,where-p1,-p2,-pnaretherootsofthecharacteristicequationa(s)=0,i.e.thepolesoff(s).ci=bi/a0(i=0,1,m),chapter2:mathematicalmodelsofsystems,partialfractionexpansionforf(s)withdifferentrealpoles,wheretheconstantcoefficientsaiarecalledresiduesatthepoles=-pi.,therefore:,howtofindthecoefficientsai?,chapter2:mathematicalmodelsofsystems,example1:findtheinverselaplacetransform,chapter2:mathematicalmodelsofsystems,i.e.,chapter2:mathematicalmodelsofsystems,partialfractionexpansionforf(s)withcomplexpoles,supposingf(s)onlyhasonepairofconjugatedcomplexpoles-p1and-p2,andtheotherpolesaredifferentrealpoles.then,where,chapter2:mathematicalmodelsofsystems,or:,wherea1anda2canbecalculatedwiththefollowingequation.,chapter2:mathematicalmodelsofsystems,example2:findtheinverselaplacetransform,given,chapter2:mathematicalmodelsofsystems,i.e.,chapter2:mathematicalmodelsofsystems,therefore,chapter2:mathematicalmodelsofsystems,finally,theinverselaplacetransformwillbe:,chapter2:mathematicalmodelsofsystems,partialfractionexpansionforf(s)withrepeatedpoles,supposingf(s)onlyhasar-orderrepeatedpole-p0,wherethecoefficientsar+1,ancanbefoundwiththeforenamedsinglepoleresiduemethod.,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,therefore,fromthelaplacetransformtable,weobtain,chapter2:mathematicalmodelsofsystems,example3:findtheinverselaplacetransform,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,usinglaplacetransformtosolvethedifferentialequations,imagefunctionofoutputins-domain,algebraicequationins-domain,chapter2:mathematicalmodelsofsystems,example5:solvingadifferentialequationwithlaplacetransform,chapter2:mathematicalmodelsofsystems,dothelaplacetransformtotheleft-handofthedifferentialequation,wehave,i.e.,chapter2:mathematicalmodelsofsystems,sinceweobtain,chapter2:mathematicalmodelsofsystems,chapter2:mathematicalmodelsofsystems,therefore:,fromthelaplacetransformtable,weobtain,chapter2:mathematicalmodelsofsystems,comments:,thefinalsolutionofadifferentialequationisobtaineddirectlywithlaplacetransformmethod.noneedforfindingthegeneralandtheparticularsolutionofthedifferentialequation.,iftheinitialconditionsiszero,thetransformedalgebraicequationins-domaincanbegottensimplywithreplacingthedn/dtnoperatorwithvariablesn.,chapter2:mathematicalmodelsofsystems,notethattheoutputresponsex0(s)includestwoparts:theforcedresponsedeterminedbytheinputandthenaturalresponsedeterminedbytheinitialconditions.,chapter2:mathematicalmodelsofsystems,obviously,thetransientresponseofthesystemwillbedecreasedtozerowithtimet.,chapter2:mathematicalmodelsofsystems,2.5thetransferfunctionoflinearsystems,transferfunction,thetransferfunctionofalinearsystemisdefinedastheratioofthelaplacetransformoftheoutputvariabletothelaplacetransformoftheinputvariable,withallinitialconditionsassumedtobezero.,thesystemisinsteady-state,i.e.outputvariableanditsderivativeofallorderareequaltozerowhilet0.,chapter2:mathematicalmodelsofsystems,example1:findingthetransferfunctionofthespring-mass-dampersystem,chapter2:mathematicalmodelsofsystems,example2:findingthetransferfunctionofanop-ampcircuit,i.e.,chapter2:mathematicalmodelsofsystems,example3:findingthetransferfunctionofatwo-massmechanicalsystem,chapter2:mathematicalmodelsofsystems,ifthetransferfunctionintermsofthepositionx1(t)ofmassm1isdesired,thenwehave,mini-test:pleasewritethedifferentialequationofthetwo-massmechanicalsystem.,chapter2:mathematicalmodelsofsystems,example4:transferfunctionofdcmotor,chapter2:mathematicalmodelsofsystems,thetransferfunctionofthedcmotorwillbedevelopedforalinearapproximationtoanactualmotor,andsecond-ordereffects,suchashysteresisandthevoltagedropacrossthebrushes,willbeneglected.,theair-gapfluxofthemotorisproportionaltothefieldcurrent,providedthefieldisunsaturated,sothat,thetorquedevelopedbythemotorisassumedtoberelatedlinearlytoandthearmaturecurrentasfollows:,chapter2:mathematicalmodelsofsystems,fieldcurrentcontrolleddcmotor(ia=iaisconstant),wherekmisdefinedasthemotorconstant.,thefieldcurrentisrelatedtothefieldvoltageas,chapter2:mathematicalmodelsofsystems,theloadtorqueforrotatinginertiaasshowninthefigureiswrittenas,thereforethetransferfunctionofthemotorloadcombination,withtd(s)=0,is,chapter2:mathematicalmodelsofsystems,armaturecurrentcontrolleddcmotor(if=ifisconstant),thearmaturecurrentisrelatedtotheinputvoltageappliedtothearmatureas,wherevb(s)isthebackelectromotive-forcevoltageproportionaltothemotorspeed.thereforewehave:,chapter2:mathematicalmodelsofsystems,thearmaturecurrentis,thereforethetransferfunctionofthemotorloadcombination,withtd(s)=0,is,chapter2:mathematicalmodelsofsystems,rangeofcontrolresponsetimeandpowertoloadforelectro-mechanicalandelectrohydraulicdevices.,chapter2:mathematicalmodelsofsystems,generalformoftransferfunction,chapter2:mathematicalmodelsofsystems,remarks,thetransferfunctionofasystem(orelement)representsthere

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论