




免费预览已结束,剩余40页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章参数估计,有时候人们可能对于总体的某个数量特征感兴趣。比如:1.北方学院师生的月平均消费金额2.北方学院师生的月平均消费金额中各项消费所占的比例上述数据是北方学院全体师生这个总体的在消费方面的数量特征,要知道这些特征,有哪些办法?,方法一:对北方学院的全体师生做普查描述统计方法二:抽取部分师生做样本,进行抽样调查,根据样本的数量特征推断总体的数量特征推断统计(参数估计+假设检验)参数估计:用样本统计量去估计总体的参数。如:用样本均值x估计总体均值,用样本方差s2估计总体方差2用样本比率p估计总体比率,本章要求掌握知识点,估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准一个总体参数的区间估计方法两个总体参数的区间估计方法样本容量的确定方法,估计量:用于估计总体参数的随机变量如样本均值,样本比率、样本方差等例如:样本均值就是总体均值的一个估计量参数用表示,估计量用表示估计值:估计参数时计算出来的统计量的具体值如果样本均值x=80,则80就是的估计值,估计量与估计值(estimator&estimatedvalue),参数估计的方法,估计方法,点估计,区间估计,期中考试考完统计学,别人问你能考多少分?你可能会有两种回答:1.80分,270-90分,试比较这两种回答的优缺点。标准:1.可靠程度;2.精确程度,点估计(pointestimate),用样本的估计量直接作为总体参数的估计值例如:用样本均值直接作为总体均值的估计例如:用两个样本均值之差直接作为总体均值之差的估计没有给出估计值接近总体参数程度的信息点估计的方法有矩估计法、顺序统计量法、最大似然法、最小二乘法等,区间估计(intervalestimate),在点估计的基础上,给出总体参数估计的一个区间范围,该区间由样本统计量加减抽样误差而得到的根据样本统计量的抽样分布能够对样本统计量与总体参数的接近程度给出一个概率度量比如,某班级平均分数在7585之间,置信水平是95%,区间估计的图示,将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比率称为置信水平表示为(1-为是总体参数未在区间内的比率常用的置信水平值有99%,95%,90%相应的为0.01,0.05,0.10相应的Z/2为2.58,1.96,1.65,置信水平,由样本统计量所构造的总体参数的估计区间称为置信区间统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间用一个具体的样本所构造的区间是一个特定的区间,我们无法知道这个样本所产生的区间是否包含总体参数的真值我们只能是希望这个区间是大量包含总体参数真值的区间中的一个,但它也可能是少数几个不包含参数真值的区间中的一个,置信区间(confidenceinterval),置信区间与置信水平,影响区间宽度的因素,1.总体数据的离散程度,用来测度2.样本容量,3.置信水平(1-),影响z的大小,评价估计量标准一无偏性(unbiasedness),无偏性:估计量抽样分布的数学期望等于被估计的总体参数。,评价估计量标准二有效性(efficiency),有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效,评价估计量标准三一致性(consistency),一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数,第二节一个总体参数的区间估计,总体均值的区间估计总体比率的区间估计总体方差的区间估计,总体均值的区间估计(大样本),1.假定条件总体服从正态分布,且方差()未知如果不是正态分布,可由正态分布来近似(n30)2.使用正态分布统计量z,总体均值在1-置信水平下的置信区间为,总体均值的区间估计(例题分析),【例】一家食品生产企业以生产袋装食品为主,为对产量质量进行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布,且总体标准差为10g。试估计该批产品平均重量的置信区间,置信水平为95%,总体均值的区间估计(例题分析),解:已知N(,102),n=25,1-=95%,z/2=1.96。根据样本数据计算得:总体均值在1-置信水平下的置信区间为,该食品平均重量的置信区间为101.44g109.28g,总体均值的区间估计(小样本),1.假定条件总体服从正态分布,且方差()未知小样本(n30)2.使用t分布统计量,总体均值在1-置信水平下的置信区间为,t分布,t分布是类似正态分布的一种对称分布,它通常要比正态分布平坦和分散。一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布,总体均值的区间估计(例题分析),【例】已知某种灯泡的寿命服从正态分布,现从一批灯泡中随机抽取16只,测得其使用寿命(小时)如下。建立该批灯泡平均使用寿命95%的置信区间,总体均值的区间估计(例题分析),解:已知N(,2),n=16,1-=95%,t/2=2.131根据样本数据计算得:,总体均值在1-置信水平下的置信区间为,该种灯泡平均使用寿命的置信区间为1476.8小时1503.2小时,总体比率的区间估计,1.假定条件总体服从二项分布可以由正态分布来近似2.使用正态分布统计量z,3.总体比率在1-置信水平下的置信区间为,总体比率的区间估计(例题分析),【例】某城市想要估计下岗职工中女性所占的比率,随机地抽取了100名下岗职工,其中65人为女性职工。试以95%的置信水平估计该城市下岗职工中女性比率的置信区间,解:已知n=100,p65%,1-=95%,z/2=1.96,该城市下岗职工中女性比率的置信区间为55.65%74.35%,一个总体参数区间估计在SPSS中的实现:分析探索统计量描述性均值的区间估计,输入置信度。比率估计数据用虚变量表示。,总体方差的区间估计,1.估计一个总体的方差或标准差2.假设总体服从正态分布3.总体方差的点估计量为s2,且,4.总体方差在1-置信水平下的置信区间为,总体方差的区间估计(图示),2,21-,2,总体方差1-的置信区间,自由度为n-1的2分布,总体方差的区间估计(例题分析),【例】一家食品生产企业以生产袋装食品为主,现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布。以95%的置信水平建立该种食品重量方差的置信区间,总体方差的区间估计(例题分析),解:已知n25,1-95%,根据样本数据计算得s2=93.212置信度为95%的置信区间为,该企业生产的食品总体重量标准差的的置信区间为7.54g13.43g,第三节两个总体参数的区间估计,两个总体均值之差的区间估计两个总体比率之差的区间估计两个总体方差比的区间估计,两个总体参数的区间估计,两个总体均值之差的估计(大样本),1.假定条件两个总体都服从正态分布,1、2已知若不是正态分布,可以用正态分布来近似(n130和n230)两个样本是独立的随机样本使用正态分布统计量z,两个总体均值之差的估计(大样本),1.1,2已知时,两个总体均值之差1-2在1-置信水平下的置信区间为,1、2未知时,两个总体均值之差1-2在1-置信水平下的置信区间为,两个总体均值之差的估计(例题分析),【例】某地区教育委员会想估计两所中学的学生高考时的英语平均分数之差,为此在两所中学独立抽取两个随机样本,有关数据如右表。建立两所中学高考英语平均分数之差95%的置信区间,两个总体均值之差的估计(例题分析),解:两个总体均值之差在1-置信水平下的置信区间为,两所中学高考英语平均分数之差的置信区间为5.03分10.97分,两个总体均值之差的估计(小样本:12=22),1.假定条件两个总体都服从正态分布两个总体方差未知但相等:1=2两个独立的小样本(n130和n230)2.总体方差的合并估计量,估计量x1-x2的抽样标准差,两个总体均值之差的估计(小样本:12=22),1.两个样本均值之差的标准化,两个总体均值之差1-2在1-置信水平下的置信区间为,两个总体均值之差的估计(例题分析),【例】为估计两种方法组装产品所需时间的差异,分别对两种不同的组装方法各随机安排12名工人,每个工人组装一件产品所需的时间(分钟)下如表。假定两种方法组装产品的时间服从正态分布,且方差相等。试以95%的置信水平建立两种方法组装产品所需平均时间差值的置信区间,两个总体均值之差的估计(例题分析),解:根据样本数据计算得合并估计量为:,两种方法组装产品所需平均时间之差的置信区间为0.14分钟7.26分钟,估计总体均值时样本容量的确定,估计总体均值时样本容量n为样本容量n与总体方差2、允许误差E、可靠性系数Z或t之间的关系为与总体方差成正比与允许误差成反比与可靠性系数成正比,其中:,估计总体均值时样本容量的确定(例题分析),【例】拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计年薪95%的置信区间,希望允许误差为400元,应抽取多大的样本容量?,估计总体均值时样本容量的确定(例题分析),解:已知=2000,E=400,1-=95%,z/2=1.96应抽取的样本容量为,即应抽取97人作为样本,估
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产销售团队保密协议与竞业禁止合同模板
- 离婚协议书子女抚养费用、财产分配与监护权协议参考
- 高新技术园区物业管理权及创新创业服务转让协议
- 离婚协议中婚前财产分割与债务清偿责任协议
- 离婚协议书中财产分割及共同债务还款协议
- 互联网公司弹性社保及股权激励劳动合同书
- 留学那些事儿培训
- 微缩迷你玩具课件
- 照相的创意课件
- Java编程规范培训
- 2025年广西环保集团第三次公开招聘12人考试参考试题及答案解析
- 输液反应应急预案课件
- 2025年德惠市公开招聘社区工作者(194人)备考练习题库及答案解析
- 三同时培训课件
- 2025国家网络安全宣传周
- 预算评审课件
- 中国特色社会主义民族宗教理论知识竞赛题库及答案
- 2025年8月31日湖南省市直遴选笔试真题及答案解析(B卷)
- 银行双录专区课件
- 单位与个人劳务合同范本
- GB/T 31586.2-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第2部分:划格试验和划叉试验
评论
0/150
提交评论