定积分在几何学上的应用PPT课件_第1页
定积分在几何学上的应用PPT课件_第2页
定积分在几何学上的应用PPT课件_第3页
定积分在几何学上的应用PPT课件_第4页
定积分在几何学上的应用PPT课件_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-,1,四、旋转体的侧面积(补充),二、体积,第二节,一、平面图形的面积,三、平面曲线的弧长,定积分在几何学上的应用,第六章,-,2,曲边梯形的面积,曲边梯形的面积,1.直角坐标系情形,一、平面图形的面积,-,3,解,两曲线的交点,面积元素,选为积分变量,-,4,解,两曲线的交点,选为积分变量,-,5,于是所求面积,说明:注意各积分区间上被积函数的形式,问题:,积分变量只能选吗?,-,6,解,两曲线的交点,选为积分变量,-,7,如果曲边梯形的曲边为参数方程,曲边梯形的面积,-,8,例3.求椭圆,解:利用对称性,所围图形的面积.,有,利用椭圆的参数方程,应用定积分换元法得,当a=b时得圆面积公式,-,9,例4.求由摆线,的一拱与x轴所围平面图形的面积.,解:,-,10,2.极坐标情形,求由曲线,及,围成的曲边扇形的面积.,在区间,上任取小区间,则对应该小区间上曲边扇形面积的近似值为,所求曲边扇形的面积为,-,11,对应从0变,例5.计算阿基米德螺线,解:,点击图片任意处播放开始或暂停,到2所围图形面积.,-,12,解,由对称性知总面积=4倍第一象限部分面积,-,13,解,利用对称性知,-,14,心形线(外摆线的一种),即,点击图中任意点动画开始或暂停,尖点:,面积:,弧长:,参数的几何意义,-,15,例.计算心形线,与圆,所围图形的面积.,解:利用对称性,所求面积,-,16,旋转体就是由一个平面图形饶这平面内一条直线旋转一周而成的立体这直线叫做旋转轴,圆柱,圆锥,圆台,二、体积,1.旋转体的体积,-,17,旋转体的体积为,-,18,解,直线方程为,-,19,-,20,例.计算由椭圆,所围图形绕x轴旋转而,转而成的椭球体的体积.,解:方法1利用直角坐标方程,则,(利用对称性),-,21,方法2利用椭圆参数方程,则,特别当b=a时,就得半径为a的球体的体积,-,22,解,-,23,星形线,星形线是内摆线的一种.,点击图片任意处播放开始或暂停,大圆半径Ra,小圆半径,参数的几何意义,(当小圆在圆内沿圆周滚动,时,小圆上的定点的轨迹为是内摆线),-,24,-,25,解,-,26,-,27,分部积分,注,(利用“偶倍奇零”),-,28,补充,利用这个公式,可知上例中,-,29,例求曲线,与x轴围成的封闭图形,绕直线y3旋转得的旋转体体积.,(94考研),解:利用对称性,故旋转体体积为,在第一象限,-,30,例设,在x0时为连续的非负函数,且,形绕直线xt旋转一周所成旋转体体积,证明:,证:,利用柱壳法,则,故,-,31,解,体积元素为,-,32,2、已知平行截面面积函数的立体体积,设定轴为x轴,所给立体垂直于x轴的截面面积为A(x),则对应于小区间,的体积元素为,因此所求立体体积为,上连续,如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.,-,33,解,取坐标系如图,底圆方程为,截面面积,立体体积,-,34,解,取坐标系如图,底圆方程为,截面面积,立体体积,-,35,三、平面曲线弧长,定理:任意光滑曲线弧都是可求长的.,并称此曲线弧为可求长的.,-,36,弧长元素,弧长,1、直角坐标情形,-,37,曲线弧为,弧长,2、参数方程情形,-,38,曲线弧为,弧长,3.、极坐标情形,-,39,解,所求弧长为,-,40,解,星形线的参数方程为,根据对称性,第一象限部分的弧长,-,41,例15.摆线,一拱,的弧长.,解:,-,42,解,-,43,证,-,44,根据椭圆的对称性知,故原结论成立.,-,45,解,-,46,例.求连续曲线段,解:,的弧长.,-,47,解,-,48,例.两根电线杆之间的电线,由于其本身的重量,成悬链线.,求这一段弧长.,解:,下垂,悬链线方程为,-,49,四、旋转体的侧面积(补充),设平面光滑曲线,求,积分后得旋转体的侧面积,它绕x轴旋转一周所得到的旋转曲面的侧面积.,取侧面积元素:,-,50,侧面积元素,的线性主部.,若光滑曲线由参数方程,给出,则它绕x轴旋转一周所得旋转体的,不是薄片侧面积S的,注意:,侧面积为,-,51,例.计算圆,x轴旋转一周所得的球台的侧面积S.,解:对曲线弧,应用公式得,当球台高h2R时,得球的表面积公式,-,52,例.求由星形线,一周所得的旋转体的表面积S.,解:利用对称性,绕x轴旋转,-,53,1.平面图形的面积,边界方程,参数方程,极坐标方程,2.平面曲线的弧长,曲线方程,参数方程方程,极坐标方程,弧微分:,直角坐标方程,上下限按顺时针方向确定,直角坐标方程,注意:求弧长时积分上下限必须上大下小,五、小结,-,54,3.已知平行截面面面积函数的立体体积,旋转体的体积,绕x轴:,4.旋转体的侧面积,侧面积元素为,(注意在不同坐标系下ds的表达式),绕y轴:,(柱壳法),-,55,思考题1,-,56,思考题1解答,两边同时对求导,-,57,积分得,所以所求曲线为,-,58,思考题2,解答,交点,立体体积,-,59,思考题3,不一定仅仅有曲线连续还不够,必须保证曲线光滑才可求长,解答,-,60,思考与练习,1.用定积分表示图中阴影部分的面积A及边界长s.,提示:交点为,弧线段部分,直线段部分,以x为积分变量,则要分,两段积分,故以y为积分变量.,-,61,2.试用定积分求圆,绕x轴,上,半圆为,下,求体积:,提示:,方法1利用对称性,旋转而成的环体体积V及表面积S.,-,62,方法2用柱壳法,说明:上式可变形为,此式反映了环体微元的另一种取法(如图所示).,-,63,求侧面积:,利用对称性,上式也可写成,它也反映了环面微元的另一种取法.,-,64,练习题1,-,65,-,66,-,67,练习题1答案,-,68,练习题2,-,69,-,70,-,71,练习题2答案,-,72,练习题3,-,73,-,74,练习题3答案,-,75,备用题,解:,1.求曲线,所围图形的面积.,显然,面积为,同理其它.,又,故在区域,-,76,分析曲线特点,2.,解:,与x轴所围面积,由图形的对称性,也合于所求.,为何值才能使,与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论