全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数中的多次求导【一次求导型】已知函数.(其中为自然对数的底数).()若曲线过点,求曲线在点处的切线方程;()若在上恒成立,求的取值范围;解:()略()由得,即有【分离变量】令, 【一次构造】则, 【一次求导】令,在上单调递增,在上单调递减【得单调性】, 【取最值】 【结论】【二次求导型】设函数 ()当时,求函数的单调区间;()若对任意恒成立,求实数的最小值答案:()略()由题意知,在上恒成立,即在区间上恒成立,又,在区间上恒成立,【分离变量】设, 【一次构造】则, 【一次求导】又令, 【二次构造】则, 【二次求导】当时,单调递减, 【得单调性】, 【求最值并与0比较】即在恒成立,所以在单调递增, 【说明原函数单调性】,故,所以实数的最小值【二次求导型 + 零点存在性定理】已知函数有极小值()求实数的值;()若,且对任意恒成立,求的最大值 答案:()()当时,所以设,【一次构造】则 【一次求导】令 【二次构造】因为, 【二次求导】所以函数在上单调递增, 【得单调性】又,【零点存在性定理】所以在上存在唯一的一个实数根,满足,且,即,所以当时,此时,当时,此时.所以在时,单调递减,在上单调递增,所以所以要使对任意恒成立,则,因为,所以要,即的最大值为【三次求导型】已知函数,且函数的图象与函数的图象在处有公共的切线(1)求的值;(2)讨论函数的单调性;(3)证明:当时,在区间内恒成立解:(1);(2)略;(3)令 ,在单调递减()在单调递增在单调递减【三次求导型 + 零点存在性定理】已知函数,()(1)函数与的图象无公共点,试求实数的取值范围;(2)是否存在实数,使得对任意的,都有函数的图象在的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由(参考数据:,,).解:()略;()假设存在实数满足题意,则不等式对恒成立.即对恒成立. 【分离变量】令, 【构造函数】则, 【一次求导】则, 【二次求导】 【三次求导】因为在上单调递增, 【得到单调性】 ,且的图象在上连续,所以存在,使得, 【零点存在性定理】即,则,所以当时,单调递减;当时,单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖南省永州市双牌县二中高二上化学期末学业质量监测试题含解析
- 2026届山西省太原市迎泽区太原五中高二化学第一学期期末监测试题含解析
- 河南对外经济贸易职业学院《卫生微生物学实验》2024-2025学年第一学期期末试卷
- 2025年教育机构合作办学合同协议
- 保山中医药高等专科学校《沙盘模拟对抗训练》2024-2025学年第一学期期末试卷
- 山西省忻州市忻州一中2025年数学高二上期末教学质量检测模拟试题含解析
- 2025年产品设计总承包合同样本
- 广东省深圳市宝安区2025-2026学年高二物理第一学期期末学业质量监测试题含解析
- 福建省三明市三地三校2025-2026学年高一上生物期末综合测试模拟试题含解析
- 池州职业技术学院《中国民族音乐1》2024-2025学年第一学期期末试卷
- 2025年《网络与信息安全管理员》考试模拟练习题及答案
- 防爆电线管道施工方案
- 通风系统管道敷设施工方案
- 2025年评标专家考试题库题及答案
- 2025广东广州银行人才招聘笔试备考试题及答案解析
- 2026海南省烟草专卖局(公司)招聘拟录用人员公示考前自测高频考点模拟试题浓缩300题及答案1套
- 2025威海环翠文旅发展集团有限公司公开招聘工作人员考试参考题库及答案解析
- 加盟瑞幸合伙合同范本
- 2025年仓储部仓储员岗位技能考核试题
- 湖北省专升本2025年汉语言文学古代文学试卷(含答案)
- 铭记历史+勿忘国耻:从电影《731》看民族记忆-2025-2026学年高中上学期主题班会
评论
0/150
提交评论