




已阅读5页,还剩60页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,3.2立体几何中的向量方法法向量,直线的方向向量:,一般地,如果非零向量v与直线l平行,就称v为l的方向向量。*.一条直线的方向向量有无数多个。*.空间中任意一条直线 的位置可以一个定点以及一个定方向(方向向量)确定.,平面的法向量:如果表示向量 的有向线段所在直线垂直于平面 ,则称这个向量垂直于平面 ,记作 ,如果 ,那 么 向 量 叫做平面 的 法向量.,给定一点A和一个向量 ,那么过点A,以向量 为法向量的平面是完全确定的.,平面的法向量:,注意:1.法向量一定是非零向量;2.一个平面的所有法向量(无限多个)都互相平行;3.向量 是平面的法向量, 向量 是与平面平行或在平面内,则有,问题:如何求平面ABC的单位法向量呢?,求法向量的步骤:,7,空间向量应用在立体几何证明中的应用,平行与垂直的问题的证明,除了要熟悉相关的定理之外,下面几个性质必须掌握。,1、已知b,a不在内,如果ab,则a。,2、如果a, a,则。,3、如果ab, a,则b。,4、如果a, b, ab,则。,一、 用空间向量处理“平行”问题,l,M,N,例1.如图:ABCD与ABEF是正方形,CB平面ABEF,H、G分别是AC、BF上的点,且AH=GF. 求证: HG平面CBE.,P,o,z,y,证明:由已知得:AB、BC、BE两两垂直,故可建立如图所示的空间直角坐标系o-xyz.,x,设正方形边长为1, AH=FG=a, 则H(0,1- a , a)、 G(1- a , 1- a,0),故 ,而平面CBE的法向量为 (0,1,0), 故 ,而 平面CBE 故 HG平面CBE,例2.在正方体ABCD-A1B1C1D1中,求证: 平面A1BD平面CB1D1,于是平面A1BD平面CB1D1,o,z,y,x,证明:建立如图所示的空间直角坐标系o-xyz,同理可得平面CB1D1的法向量为,则显然有,通过本例的练习,同学们要进一步掌握平面法向量的求法:即用平面内的两个相交向量与假设的法向量求数量积等于0,利用解方程组的方法求出平面法向量(在解的过程中可令其中一个未知数为某个数)。,例4.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是A1B1、B1C1、C1D1、D1A1的中点. 求证: 平面AEH平面BDGF,故得平面AEH平面BDGF,o,z,y,x,略证:建立如图所示的空间直角坐标系o-xyz,则求得平面AEF的法向量为,求得平面BDGH的法向量为,显然有,故 平面AEH平面BDGF,二、 用空间向量处理“垂直”问题,l,证明:,分别以 为坐标向量建立空间直角坐标系,例:如图,在正三棱柱ABC-A1B1C1中,AB=AA1/3=a,E、F分别是BB1、CC1上的点,且BE=a,CF=2a 。求证:面AEF面ACF。,A,F,E,C1,B1,A1,C,B,x,z,y,A,F,E,C1,B1,A1,C,B,z,y,不防设 a =2,则A(0,0,0),B(3 ,1,0),C(0,2,0),E( 3,1,2) ,F(0,2,4),AE=( 3,1,2)AF=(0,2,4),因为,x轴面ACF,所以可取面ACF的法向量为m=(1,0,0),设n=(x,y,z)是面AEF的法向量,则,x,nAE=3x+y+2z=0,nAF=2y+4z=0,x=0,y= -2z,令z=1得, n=(0,-2,1),显然有m n=0,即,mn,面AEF面ACF,证明:如图,建立空间直角坐标系A-xyz ,,利用向量解决 空间角问题,数量积:,夹角公式:,异面直线所成角的范围:,思考:,结论:,小结,例一:,所以 与 所成角的余弦值为,解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则:,所以:,题型二:线面角,直线与平面所成角的范围:,思考:,结论:,例二:,在长方体 中,,练习1:,的棱长为1.,正方体,二面角的范围:,关键:观察二面角的范围,设平面,解:如图,以C为原点建立空间直角坐标系C-xyz.设底面三角形的边长为a,侧棱长为b,则 C(0,0,0),故,由于 ,所以,设面 的一个法向量为,练习2:,小结:,1.异面直线所成角:,2.直线与平面所成角:,3.二面角:,关键:观察二面角的范围,空间向量之应用,利用空间向量求距离,a,l,a,A,B,B1,A1,a,n,P,A,O,M,N,方法指导:若点P为平面外一点,点A为平面内任一点,平面的法向量为n,则点P到平面的距离公式为,一、求点到平面的距离,如何用向量法求点到平面的距离:,例1、已知正方形ABCD的边长为4,CG平面ABCD,CG=2,E、F分别是AB、AD的中点,求点B到平面GEF的距离。,D,A,B,C,G,F,E,D,A,B,C,G,F,E,例1,练习1:,S,B,C,D,A,例2、已知正方形ABCD的边长为4,CG平面ABCD,CG=2,E、F分别是AB、AD的中点,求直线BD到平面GEF的距离。,D,A,B,C,G,F,E,二、求直线与平面间距离,正方体AC1棱长为1,求BD与平面GB1D1的距离,A1,B1,C1,D1,A,B,C,D,练习3:,G,例3、正方体AC1棱长为1,求平面AD1C与平面A1BC1的距离,A1,B1,C1,D1,A,B,C,D,三、求平面与平面间距离,练习4、在边长为1的正方体ABCD-A1B1C1D1中,M、N、E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求平面AMN与平面EFDB的距离。,B,A,a,M,N,n,a,b,四、求异面直线的距离,A,B,C,C1,取x=1,z则y=-1,z=1,所以,E,A1,B1,例4,已知正方体ABCD-A1B1C1D1的棱长为1,求异面直线DA1与AC的距离。,A,B,D,C,A1,B1,C1,D1,x,y,z,练习5,练习6:如图,A,S,C,D,B,结论1,a,n,P,A,O,M,N,结论2,B,A,a,M,N,n,a,b,小结:,1、怎样利用向量求距离?,点到平面的距离:连结该点与平面上任意一点的向量在平面定向法向量上的射影(如果不知道判断方向,可取其射影的绝对值)。,点到直线的距离:求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第5课 歌声嘹亮-子程序设计和机器人发音说课稿-2025-2026学年初中信息技术粤教清华版九年级下册-粤教清华版
- 3.2 土地资源说课稿-2024-2025学年人教版地理八年级上册
- 《教头风雪山神庙》《装在套子里的人》联读 教学设计 2023-2024学年统编版高中语文必修下册
- 2025年中考数学试题分类汇编:统计(9大考点57题) (第1期)原卷版
- 6摆的研究教学设计-2025-2026学年小学科学浙教版2017五年级下册-浙教版
- 9 我的老师教学设计-2025-2026学年小学美术广西版二年级上册-广西版
- 5.1 传感器的原理教学设计-2025-2026学年高中物理沪教版2019选择性必修第二册-沪教版2019
- 2025年行政能力测试题库及答案
- 4.2.2等差数列的前n项和公式(一)教学设计-2023-2024学年高二上学期数学人教A版(2019)选择性必修第二册
- 在北京的金山上(教学设计)-2023-2024学年花城版音乐三年级下册
- 应急救援车管理制度
- 关于车辆卫生管理制度
- 口腔实训室管理制度
- 2024年海南省琼海市事业单位公开招聘警务辅助人员22人试题带答案
- 2025年企业管理师资格考试试卷及答案
- 重庆一中高2025届高三高考适应性考试数学(含答案)
- DR操作常规文档
- 试管婴儿医院协议书
- 四渡赤水战役解析
- 运输咨询服务合同协议
- 2025-2031年中国咖啡豆行业市场深度分析及投资策略研究报告
评论
0/150
提交评论