




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
检测监控中的信号分析与处理技术,昝涛2012.03,主要内容,频域分析与工程应用FFT功率谱相干分析倒谱,主要内容,时间序列AR模型ARMA,主要内容,时频联合分析简介短时傅立叶变换Wigner-Ville分布小波分析与小波报分解,信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。,时域分析与频域分析的关系,时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简谐波外,很难明确揭示信号的频率组成和各频率分量大小。,图例:受噪声干扰的多频率成分信号,大型空气压缩机传动装置故障诊断,频域分析与应用,巴塞伐尔(Parseval)定理巴塞伐尔定理:在时域中计算的信号总能量,等于在频域中计算的信号总能量。即:上式又叫能量等式。,频域分析与应用,巴塞伐尔(Parseval)定理设有傅里叶变换对:x1(t)X1(f),x2(t)X2(f)按照频域卷积定理有:x1(t)x2(t)X1(f)*X2(f)即:,频域分析与应用,巴塞伐尔(Parseval)定理令f0=0得:又令x1(t)=x2(t)=x(t)得:,频域分析与应用,巴塞伐尔(Parseval)定理x(t)是实函数,则X(-f)=X*(f),所以:|X(f)|2称为能谱,它是沿频率轴的能量分布密度。,频域分析与应用,巴塞伐尔(Parseval)定理,频域分析与应用,功率谱分析及其应用确定信号在满足狄里赫利条件,并绝对可积情况下存在傅立叶变换。随机信号既不是能量有限,又不是功率有限信号,因此,原则上讲不能进行傅立叶变换。,频域分析与应用,功率谱分析及其应用随机信号的自功率谱密度函数(自谱)是该随机信号自相关函数的傅立叶变换,记为Sx(f):其逆变换为:,频域分析与应用,功率谱分析及其应用两随机信号的互功率谱密度函数(互谱)为:其逆变换为:,频域分析与应用,功率谱分析及其应用由于S(f)和R(t)之间是傅里叶变换对的关系,两者是唯一对应的。S(f)中包含着R(t)的全部信息。因为Rx(t)为实偶函数,Sx(f)亦为实偶函数。互相关函数Rxy(t)并非偶函数,因此Sxy(f)具有虚、实两部分,同样,Sxy(f)保留了Rxy(t)的全部信息。,频域分析与应用,功率谱分析及其应用Sx(f)和Sxy(f)是随机信号的频域描述函数。Sx(f)表示信号的功率密度沿频率轴的分布,故又称Sx(f)为功率谱密度函数。随机信号的积分不收敛,不满足狄里赫利条件,因此其傅立叶变换不存在,无法直接得到频谱。,频域分析与应用,功率谱分析及其应用均值为零的随机信号的相关函数在时是收敛的,即,可满足傅里叶变换条件,根据傅里叶变换理论,自相关函数Rx(t)是绝对可积的。由当=0时,有:,频域分析与应用,功率谱分析及其应用根据相关函数的定义,当=0时,有:可得:,频域分析与应用,功率谱分析及其应用上式表明:Sx(f)曲线下的总面积与x2(t)/T曲线下的总面积相等。从物理意义上讲,x2(t)是信号x(t)的能量,x2(t)/T是信号x(t)的功率,是信号x(t)的总功率。这一总功率与Sx(f)曲线下的总面积相等,故Sx(f)曲线下的总面积就是信号的总功率。,频域分析与应用,功率谱分析及其应用自功率谱密度函数Sx(f)和幅值谱X(f)或能谱|X(f)|2之间的关系:根据巴塞伐尔定理式在整个时间轴上信号平均功率为:已知:,频域分析与应用,功率谱分析及其应用因此自功率谱密度函数是偶函数,它的频率范围是(-,)又称双边自功率谱密度函数。它在频率范围(-,0)的函数值是其在(0,)频率范围函数值的对称映射,因此,可用在(0,)范围内Gx(f)=2Sx(f)来表示信号的全部功率谱。我们把Gx(f)称为x(t)信号的单边功率谱密度函数。,频域分析与应用,功率谱的应用1、自功率谱密度Sx(f)为自相关函数Rx(t)的傅里叶变换,故Sx(f)包含着Rx(t)中的全部信息。自功率谱密度Sx(f)反映信号的频域结构,这与幅值谱|x(f)|相似,但是自功率谱密度所反映的是信号幅值的平方,因此其频域结构特征更为明显,主要内容,自功率谱-幅频谱,频域分析与应用,功率谱的应用2、输入、输出的自功率谱密度与系统频率响应函数的关系如下:通过输入、输出自谱的分析,就能得出系统的幅频特性。对于单输入、单输出的理想线性系统,频域分析与应用,功率谱的应用3、互谱去噪声一个受到外界干扰测试系统n1(t)为输入噪声,n2(t)为加于系统中间环节的噪声,n3(t)为加在输出端的噪声。该系统的输出y(t)为:可以证明,频域分析与应用,功率谱的应用4、设备诊断实例1:汽车变速箱功率谱图,频域分析与应用,功率谱的应用4、设备诊断实例2:泵轴承故障监测,频域分析与应用,三维谱阵图(瀑布图),频域分析与应用,倒谱分析已知时域信号x(t)经过傅里叶变换后,可得到频域函数X(f)或功率谱密度函数Sx(f),对功率谱密度函数取对数后,再对其进行傅里叶变换并取平方,则可以得到倒频谱函数。CF(q)(powercepstrum)其数学表达式为:CF(q)又叫功率倒频谱,或叫对数功率谱的功率谱。,频域分析与应用,倒谱分析工程上常用的是上式的开方形式,即:C0(q)称为幅值倒频谱,有时简称倒频谱。自变量q称为倒频率,它具有与自相关函数Rx(t)中的自变量相同的时间量纲,一般取ms或s。因为倒频谱是傅里叶正变换,积分变量是频率f而不是时间,故倒频谱C0(q)的自变量q具有时间的量纲,q值大的称为高倒频率,表示谱图上的快速波动和密集谐频,q值小的称为低倒频率,表示谱图上的缓慢波动和散离谐频.,频域分析与应用,倒谱分析为了使其定义更加明确,还可以定义:即倒频谱定义为信号的双边功率谱对数加权,再取其傅里叶逆变换,联系一下信号的自相关函数:这种定义方法与自相关函数很相近,变量q与在量纲上完全相同。,频域分析与应用,倒谱分析的应用用倒频谱诊断齿轮故障如果齿轮缺陷严重或多种故障存在,以致许多机械中经常出现的不对准、松动、及非线性刚度等原因,或者出现拍波截断等原因时,则边带频率将大量增加。,频域分析与应用,倒谱分析的应用在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。下图即为相应的倒频谱图。从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。,相干分析及其应用,相干分析相干函数是评价测试系统的输入信号和输出信号之间的因果性的指标函数,即输出信号的功率谱中有多少是所测试的输入量引起的响应的指标。通常相干函数用表示,其定义为:,相干分析及其应用,相干分析如果相干函数为零,表示输出信号与输入信号不相干。相干函数为1时,表示输出信号与输入信号完全相干。若相干函数在01之间,则表明有如下三种可能:(1)测试中有外界噪声干扰;(2)输出y(t)是输入x(t)和其它输入的综合输出;(3)联系x(t)和y(t)的线性系统是非线性的。,相干分析及其应用,相干分析若系统为线性系统上式表明:对于线性系统,输出完全是由输入引起的响应。,相干分析及其应用,相干分析的应用柴油机润滑油泵压油管振动和压力脉动间的相干分析,润滑油泵转速为n=781rpm,油泵齿轮的齿数为z=14,测得油压脉动信号x(t)和压油管振动信号y(t)压油管压力脉动的基频为f0=nz/60=182.24(Hz),时间序列分析,时间序列时间序列分析:是一种根据动态数据揭示系统动态结构和规律的统计方法。其基本思想:根据系统的有限长度的运行记录(观察数据),建立能够比较精确地反映序列中所包含的动态依存关系的数学模型,并借以对系统的未来进行预报(王振龙),一、随机过程1、定义:在数学上,随机过程被定义为一组随机变量,即,,其中,T表示时间t的变动范围,对每个固定的时刻t而言,Zt是一随机变量,这些随机变量的全体就构成一个随机过程。,时间序列分析,2、特征(1)随机过程是随机变量的集合(2)构成随机过程的随机变量是随时间产生的,在任意时刻,总有随机变量与之相对应。,时间序列分析,二、随机序列(时间序列)1、当时,即时刻t只取整数时,随机过程可写成此类随机过程称为随机序列,也称时间序列。,时间序列分析,可见(1)随机序列是随机过程的一种,是将连续时间的随机过程等间隔采样后得到的序列;(2)随机序列也是随机变量的集合,只是与这些随机变量联系的时间不是连续的、而是离散的。,时间序列分析,常用的时间序列模型AR(AutoRegressive)MA(MovingAverage)ARMA,时间序列分析,常用的时间序列模型AR(AutoRegressive)MA(MovingAverage)ARMA,时间序列分析,AR模型简介,自回归过程(Auto-regressivemodel,AR)如果一个随机过程可表达为其中i,i=1,p是自回归参数,是白噪声过程,则称xt为p阶自回归过程,用AR(p)表示。xt是由它的p个滞后变量的加权和以及ut相加而成。,时间序列主要用于对机械设备的剩余寿命或未来发展趋势的预测。,时间序列分析的应用,时间序列分析的应用,根据分析以及模型从简的原则,初步判定可以由数据序列拟合AR(2)模型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东中共中山市委政法委员会所属事业单位招聘事业单位人员4人模拟试卷及答案详解(网校专用)
- 2025辽宁沈阳城市建设投资集团有限公司所属企业沈阳城投新能源集团有限公司招聘7人考前自测高频考点模拟试题及参考答案详解一套
- 2025年蚌埠市龙子湖区产业发展有限公司招聘22人模拟试卷附答案详解(完整版)
- 2025广西平果市农业机械化服务中心城镇公益性岗位人员招聘1人考前自测高频考点模拟试题及参考答案详解一套
- 2025年宁波市北仑区卫生健康系统第二批招聘事业编制工作人员123人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025广东汕头大学医学院教务处医学教育拓展项目教辅人员招聘1人考前自测高频考点模拟试题有答案详解
- 2025广东佛山市中心血站南海血站招聘公益一类事业编制工作人员2人模拟试卷及答案详解(全优)
- 2025年临沂兰山区教育和体育局部分事业单位公开招聘教师(55名)模拟试卷及答案详解(网校专用)
- 2025年安徽理工大学第一附属医院第二批紧缺岗位招聘14人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025辽宁大连医科大学附属第一医院招聘(截止11.30)模拟试卷有完整答案详解
- T/CCAS 010-2019水泥窑协同处置飞灰预处理产品水洗氯化物
- DB37-T1317-2025超细干粉灭火系统技术规范
- 2025校招:网络工程面试题库及答案
- 头皮撕脱伤的护理常规
- 麻醉器械耗材管理制度
- 面向未来的《义务教育语文课程标准(2025年版)》解读
- 2025-2030中国口腔医疗行业发展分析及投资前景与战略规划研究报告
- 《流量计培训》课件
- 酒店残疾人服务工作流程
- 中华民族共同体概论讲稿专家版《中华民族共同体概论》大讲堂之第三讲 文明初现与中华民族起源(史前时期)
- 公路工程技术创新管理制度
评论
0/150
提交评论