




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,微機電糸統分析期末報告(二)Inkjet授課教師:李旺龍學生:李聰瑞Q28961038,2,InkjetModel,Inkjetprintersareattractivetoolsforprintingtextandimagesbecauseoftheirlowcost,highresolution,andacceptablespeed.Theworkingprinciplebehindinkjettechnologyistoejectsmalldropletsofliquidfromanozzleontoasheetofpaper.Importantpropertiesofaprinterareitsspeedandtheresolutionofthefinalimages.Designerscanvaryseveralparameterstomodifyaprintersperformance.Forinstance,theycanvarytheinkjetgeometryandthetypeofinktocreatedropletsofdifferentsizes.Thesizeandspeedoftheejecteddropletsarealsostronglydependentonthespeedatwhichinkisinjectedintothenozzle.Simulationscanbeveryusefultoimprovetheunderstandingofthefluidflowandtopredicttheoptimaldesignofaninkjetforaspecificapplication.Althoughinitiallyinventedtoproduceimagesonpaper,theinkjettechniquehassincebeenadoptedforotherapplicationareas.Instrumentsfortheprecisedepositionofmicrodropletsoftenemployinkjets.Theseinstrumentsareusedwithinthelifesciencesfordiagnosis,analysis,anddrugdiscovery.Inkjetshavealsobeenusedas3Dprinterstosynthesizetissuefromcellsandtomanufacturemicroelectronics.Foralloftheseapplicationsitisimportanttobeabletoaccuratelycontroltheinkjetsperformance.ThisexampledemonstrateshowtouseCOMSOLMultiphysicstomodelthefluidflowwithinaninkjet.ThemodelusestheNavierStokesequationstodescribethemomentumtransportandconservationofmass.Surfacetensionisincludedinthemomentumequations.Areinitialized,conservativelevelsetmethodrepresentsandmovestheinterfacebetweentheairandink.,3,Figure4-61showsthegeometryoftheinkjetstudiedinthisexample.Becauseofitssymmetryyoucanuseanaxisymmetric2Dmodel.Initially,thespacebetweentheinletandthenozzleisfilledwithink.Additionalinkisinjectedthroughtheinletduringaperiodof10s,anditconsequentlyforcesinktoflowoutofthenozzle.Whentheinjectionstops,adropletofinksnapsoffandcontinuestotraveluntilithitsthetarget.,ModelDefinition,Figure4-61:Geometryoftheinkjet,4,TransportofMassandMomentum,TheNavier-Stokesequationsdescribethetransportofmassandmomentumforfluidsofconstantdensity.Itispossibletomodelbothinkandairasbeingincompressibleaslongasthefluidvelocityissmallcomparedtothespeedofsound.Inthismodel,youmustaddatermtoaccountforsurfacetension.TheNavier-Stokesequationswithsurfacetensionare,Here,denotesdensity(kg/m3),equalsthedynamicviscosity(Ns/m2),urepresentsthevelocity(m/s),andpdenotespressure(Pa).Fstisthesurfacetensionforce,whichis,whereIistheidentitymatrix,nistheinterfacenormal,equalsthesurfacetensioncoefficient(N/m),andequalsaDiracdeltafunctionbeingnonzeroonlyatthefluidinterface.InCOMSOLMultiphysics,theNavier-StokesequationsarealreadyformulatedintheIncompressibleNavier-Stokesapplicationmode,whichisavailableintheMEMSModule.Youmustaddonlythesurface-tensionforceexpressedincylindricalcoordinates.Thefollowingtablegivesthephysicalparametersofinkandair:,5,REPRESENTATIONANDCONVECTIONOFTHEFLUIDINTERFACE,Inthismodelyouuseareinitialized,conservativelevelsetmethodtodescribeandconvecttheinterface.The0.5contourofthelevelsetfunctiondefinestheinterface,whereequals0inairand1inink.Inatransitionlayerclosetotheinterface,goessmoothlyfrom0to1.Thenormaltotheinterfaceis,Theinterfacemoveswiththefluidvelocity,u,attheinterface.Thefollowingequationdescribesthereinitializedconvectionofthelevelsetfunction:,Thethicknessofthetransitionlayerisproportionalto.Forthismodelyoucanuse=2h,wherehisthemeshsize.Youthenobtainasharperinterfaceintheregionswherethemeshisfiner.Inthisexampleyouuseastructuredmesh.Forunstructuredmeshes,avoidlettingdependonh.,Theparameterdeterminestheamountofreinitialization.Ifthevelocitygradientsaresmallatthefluidinterfaceyoucanchoose=1.Inthisexamplethevelocitygradientsattheinterfacearesignificant,andyoumustthereforechoosealargervaluefortokeepthethicknessofthetransitionlayerconstant.,Youcanusethelevelsetfunctiontosmooththedensityandviscosityjumpacrosstheinterfacebyletting,Tosimplifythecalculationofthesurfacetensionforce,set,6,InitialConditions,Figure4-62showsatt=0,thatis,theinitialdistributionofinkandair.Thevelocityisinitially0.,Figure4-62:Initialdistributionofink.Blackcorrespondstoinkandwhitecorrespondstoair.,BoundaryConditions,Inlet,Theinletvelocityinthez-directionincreasesfrom0totheparabolicprofile,duringthefirst2s.Thevelocityisthenv(r)for10sandfinallydecreasesto0foranother2s.YoucanobtainthiseffectbyusingthesmoothstepfunctionH(t1,2),whichis0fort1+2asshowninFigure4-63.,7,Figure4-63:Smoothstepfunctionf(t)=H(t1,2).,Thetime-dependentvelocityprofileinthez-directioncanthenbedefinedas,Forthelevelsetequation,use=1astheboundarycondition.,Outlet,Setaconstantpressureattheoutlet.Thevalueofthepressuregivenhereisnotimportantbecausethevelocitydependsonlyonthepressuregradient.Youthusobtainthesamevelocityfieldregardlessofwhetherthepressureissetto1atmorto0.Useconvectivefluxastheboundaryconditionforthelevelsetequation.,8,Walls,Onallotherboundariesexceptthetarget,setnoslipconditions.Ifyouusethematthetarget,theinterfacecannotmovealongthisboundary.YoucanresolvethisproblembyreplacingthenoslipconditionwithaNavierslipcondition.Inthiscase,theNavierslipconditionforthevelocitycomponentinther-direction,u,isgivenby,whereisasmallparametercalledthesliplength.Notethatshouldbeofthesameorderasthesizeofthemesh.Useinsulation/symmetryastheboundaryconditionforthelevelsetequationonallwallsincludingthetarget.Thispreventsanyoutflowofwaterorinkthroughthewalls.,ResultsandDiscussion,Figure4-64andFigure4-65showtheinksurfaceandthevelocityfieldatdifferenttimes.Thedroplethitsthetargetafterapproximately160s.,9,Figure4-64:Positionofair/inkinterfaceandvelocityfieldatvarioustimes.,Figure4-65:Positionofair/inkinterfaceandvelocityfieldatvarioustimes.,10,Figure4-66illustratesthemassofinkthatisfurtherthanmfromtheinlet.Thefigureshowsthatthemassoftheejecteddropletisapproximatelykg.,Figure4-66:Amountofinkjustabovethenozzle.,Thisexamplestudiesonlyoneinkjetmodel,butitiseasytomodifythemodelinseveralways.Youcan,forexample,changepropertiessuchasthegeometryortheinletvelocityandstudytheinfluenceonthesizeandthespeedoftheejecteddroplets.Youcanalsoinvestigatehowtheinkjetwouldperformiftheinkwerereplacedbyadifferentfluid.Itisalsoeasytoaddforcessuchasgravitationtothemodel.,11,ModelinginCOMSOLMultiphysics,TosetupthemodelinCOMSOLMultiphysicsyouusetwo2Daxisymmetricapplicationmodes:IncompressibleNavier-Stokes,andConvectionandDiffusion.IntheNavier-Stokesequationsyoumustaddthesurface-tensionforce.YoumustalsomodifytheConvection/Diffusionequationtoobtainthelevelsetequation.Youuseastructuredmeshandrefineitintheregionswherethefluidinterfacepasses.Beforestartingthecalculations,youmustreinitializethelevelsetfunction.Dosobysolvingonlyforthelevelsetfunctionwithzerovelocity.Thenusetheresultingsolutionasinitialdata.Tocalculatethedropletsmassuseanintegrationcouplingvariable.Tovisualizethedropletin3D,revolvethe2Daxisymmetricsolutiontoa3Dgeometry.,References,Jyi-TyanYeh,“AVOF-FEMCoupledInkjetSimulation,”Proc.ASMEFEDSM01,NewOrleans,Louisiana,2001.2.E.OlssonandG.Kreiss,“AConservativeLevelSetMethodforTwoPhaseFlow,”J.Comput.Phys.,vol.210,pp.225-246,2005.,12,ModelingUsingtheGraphicalUserInterface,ModelNavigator,13,GeometryModeling,1FromtheDrawmenuselectSpecifyObjectsLine2SelectClosedpolyline(solid)fromtheStylelist.3Inthereditfield,enter01e-41e-42.5e-52.5e-51e-41e-42e-42e-40,andinthezeditfield002e-45.75e-46e-46e-41.5e-31.5e-31.6e-31.6e-3.4ClickOK.5ClicktheZoomExtentsbuttonontheMaintoolbar.6Shift-clicktheRectangle/SquarebuttonontheDrawtoolbar.Enter1e-4intheWidtheditfield,2e-4intheHeighteditfield,and0inboththerfieldandthezfields.MakesureCornerisselectedintheBaselist.ClickOK.7Repeatthepreviousstepthreetimestospecifythreemorerectanglesaccordingtothefollowingtable:,14,OPTIONSANDSETTINGS,1FromtheOptionsmenuselectConstants.2Enterthefollowingconstantsettings:,3ClickOK.4FromtheOptionsmenuselectExpressionsScalarExpressions.5Insertthefollowingexpressions:6ClickOK.,15,16,BoundaryConditionsIncompressibleNavier-Stokes,1IntheModelTree,right-clickIncompressibleNavier-Stokes(mmglf)andselectBoundarySettings.2PressCtrlandselectalltheboundariesatthesymmetryline,thatis,Boundaries1,3,5,7,and9.SelectAxialSymmetryfromtheBoundaryconditionlist.3Selecttheinlet(Boundary2)andselecttheboundaryconditionInflow/Outflowvelocity.Typeinletvelinthez-velocityeditfield.4SelectBoundary24(theoutlet)andspecifytheboundaryconditionOutflow/Pressure.5SelectBoundaries11,18,and23(thetarget).SelecttheboundaryconditionInflow/Outflowvelocityandtypelambdaslip*uzinther-velocityeditfield.6Verifythattheboundaryconditionfortheremainingboundaries(12,13,15,19,20,and22)isNoslip.7ClickOK.,17,18,19,SubdomainSettingsConvectionandDiffusion,1IntheModelTreewindow,right-clickConvectionandDiffusion(cd)andselectSubdomainSettings.2Makesurethatallthesubdomainsareselected.3Enter0intheDiffusioncoefficienteditfield,uinther-velocityeditfield,andvinthez-velocityeditfield.4ClicktheInittabandenterphi0intheeditfield.5ClicktheElementtabandselectLagrangeLinearinthePredefinedelementslist.6ClickOK.,20,Adjusttheconvection/diffusionequationtoobtaintheconservativelevelsetequation:1SelectPhysicsEquationSystemSubdomainSettings.Clicktheftab.2Replacetheexpressioninthefourthrowwith0.3Clickthetab.4Replacetheexpressioninthefirstcolumn,fourthrowwithr*u_phi_cd*phi+gamma*(r*phi*(1-phi)*normr-2*h*r*phir).Replacetheexpressioninthesecondcolumn,fourthrowwithr*v_phi_cd*phi+gamma*(r*phi*(1-phi)*normz-2*h*r*phiz).5ClickOK.,21,BoundaryConditionsConvectionandDiffusion,1IntheModelBrowser,right-clickConvectionandDiffusionandselectBoundarySettings.2SelectBoundaries1,3,5,7,and9,thenselectAxialsymmetryintheBoundaryconditionlist.3Selecttheinlet(Boundary2)andsetConcentrationastheboundarycondition.Enter1intheConcentrationeditfield.4Selecttheoutlet(Boundary24)andsetConvectivefluxastheboundarycondition.5ThedefaultboundaryconditionInsulation/Symmetryholdsforallotherboundaries.6ClickOK.,22,MeshGeneration,1FromtheMeshmenuselectMappedMeshParameters.2ClicktheBoundarytab.3SelectBoundaries1,2,3,5,7,9,15,and22,thenselecttheConstrainededgeelementdistributioncheckbox.NextselecteachboundaryseparatelyandspecifytheNumberofedgeelementsaccordingtothistable:4ClickRemeshandthenclickOK.,23,ComputingtheSolution,Firstreinitializetoobtainthecorrectshapeofinthetransitionlayer.1FromtheSolvemenuselectSolverParameters.2ClicktheGeneraltabandenter02e-6intheTimeseditfield.ClickOK.3SelectSolveSolverManager.4ClicktheSolveFortab.SelectConvectionandDiffusion(cd).ClickOK.5SelectSolveSolveProblem.Thiscreatesagoodinitialsolutiontothelevelsetfunction.6Tovisualizetheinitiallevelsetfunction,clickthePlotParametersbuttonontheMaintoolbar.ClicktheSurfacetab,thenselectConvectionandDiffusionConcentration,phifromthePredefinedquantitieslist.ClickOK.,Usetheobtainedsolutionasaninitialconditiontothesimulationofthedropletmotion.1ClicktheSolverManagerbuttonontheMaintoolbar.ClicktheInitialValuetab.2ClicktheStoreSolutionbutton.Selectthetime2e-6.ClickOK.3IntheInitialvalueareaselectStoredsolution.4Select2e-6fromtheSolutionattimelist.5ClicktheSolveFortab.ClickGeom1(2D)toselectallthevariables.ClickOK.6FromtheSolvemenuselectSolverParameters.7ClicktheGeneraltab,thenenter0:1e-5:2e-4intheTimeseditfield.ClickOK.8ClicktheSolvebuttonontheMaintoolbar.,24,PostprocessingandVisualization,Tovisualizetheinkjetsurfacein3D,performthesesteps:1FromtheDrawmenuselectRevolve.2IntheObjectstorevolvelistselectalltheelements(selectanyoneandthenpressCtrl+A).ClickOK.3IntheModelTreeclickGeom1toreturntothe2Dmodel.4SelectOptionsExtrusionCouplingVariablesSubdomainVariables.5SelectanysubdomainandthenpressCtrl+Atoselectallthesubdomains.6Enterphi3dintheNamefieldandphiintheExpressionfield.7ClicktheGeneraltransformationoptionbutton.8Locatethesecondrow,thenentervel3dintheNamefieldandsqrt(u2+v2)intheExpressionfield.9SelectGeneraltransformationforthisvariable.10ClicktheDestinationtab.IntheGeometrylistselectGeom2.IntheLevellistselectSubdomain.11SelectanysubdomainandpressCtrl+Atoselectallthesubdomains.12SelecttheUseselectedsubdomainsasdestinationcheckbox.13Entersqrt(x2+z2)inthexeditfield,thenclickOK.14Selectphi3dfromtheVariablelist.15SelecttheUseselectedsubdomainsasdestinationcheckboxandentersqrt(x2+z2)inthexeditfield.ClickOK.16FromtheSolvemenuselectUpdateModel.17ClickthePlotParametersbuttonontheMainmenu.18SelecttheGeneraltab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 选矿过滤脱水工异常处理考核试卷及答案
- 南宁老友粉营销策划方案
- 极美照明活动方案策划
- 咨询甲沟炎治疗方案
- 机械厂营销工作方案
- 来宾私域小程序营销方案
- 工程咨询管理方案投标
- 更换蹲便器施工方案
- 药品安全培训目的课件
- 加气块砌体粉刷施工方案
- join-in-六上-Unit3-Festivals-Part1市公开课一等奖省赛课微课金奖课
- 市政道路监理规划及市政道路监理大纲
- (高清版)DZT 0331-2020 地热资源评价方法及估算规程
- AS9100D-(2016)-标准培训课件
- 防震减灾科普
- 酒店工程节能降耗培训展示
- 设备维保的预防性保养与维护策略
- 【经典阅读】四年级阅读训练-人物描写分析(知识梳理+例文解析)(有答案)
- 2024年针灸学(正高)考试历年全考点试卷附带答案
- 订购单模板(订货单模板)
- 广东省通用安装工程综合定额(2018)Excel版
评论
0/150
提交评论