


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集体备课活动记录活动日期: 3月 24日 周次:第三周参加人:全体数学教师缺勤:无中心发言人:谷永华集体备课内容:教材分析 本单元包括五部分内容:轴对称、镜面对称、线段垂直平分线、角平分线和等腰三角形。这些内容是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象能力有着不可忽视的作用。 本单元通过让学生观察具体的实物,延伸到学习观察较为抽象的几何图形。例1展示了三名学生分别从前面、侧面、后面观察一个恐龙玩具的情境图,下面给出了从三个方向观察到的形状,让学生判断这三种形状分别是谁看到的。使学生认识到,从不同的角度观察同一物体看到的物体形状是不同的,体会局部与整体的关系。 “做一做”是让学生从不同的位置观察一摞书,判断不同的位置观察到的是什么样的图形。这个活动简单易操作,学生通过实际观察可以很容易判断出来。 本册教材中的对称,仅限于轴对称和镜面对称。第一节的内容是认识轴对称图形。教材借助于生活中的实例和学生的操作活动,判断哪些物体是对称的,找出对称轴,并初步的、感性的了解轴对称图形的性质,而对于“轴对称图形”的名称以及“在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等”的性质,教材中没有明确给出,也不要求学生掌握。例2先让学生仿照书本上的步骤随便剪一剪,使学生看到,在剪的过程中,只要把一张纸对折,两边完全重合,剪出来的就是轴对称图形,从而通过折痕引出“对称轴”的概念。 “做一做”,让学生判断哪些图形是对称的,并画出对称轴。第六节的内容是镜面对称,也就是相对于一个平面形成的对称。只要让学生观察图片、照镜子,初步认识镜面对称现象。通过两个生活中常见的现象让学生认识镜面对称,初步感受镜面对称的特点,知道生活中很多常见的现象中包含着重要的数学思想。通过线段垂直平分线、角平分线和等腰三角形等轴对称图形学习轴对称的性质。教学目标 1. 使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单图形的轴对称图形。 2. 使学生通过观察、操作,初步认识镜面对称现象。 3. 通过线段垂直平分线、角平分线和等腰三角形等轴对称图形学习轴对称的性质。 4.通过以上活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。教学重点、难点重点: 1.从不同角度观察同一个物体形状是不同的。 2.认识轴对称图形,会画对称轴。3、通过线段垂直平分线、角平分线和等腰三角形等轴对称图形学习轴对称的性质。难点:通过线段垂直平分线、角平分线和等腰三角形等轴对称图形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村产业融合发展投资合作协议
- 信息技术咨询与服务协议
- 2025年教师招聘之《幼儿教师招聘》通关试题库附答案详解(培优)
- 安全知识培训和考核结果课件
- 押题宝典教师招聘之《幼儿教师招聘》模考模拟试题及参考答案详解【预热题】
- 教师招聘之《幼儿教师招聘》综合提升练习试题及参考答案详解(研优卷)
- 开发区新质生产力发展策略
- 影视剧美术指导聘用劳动协议
- 2025年教师招聘之《幼儿教师招聘》考前冲刺测试卷包含答案详解(满分必刷)
- 发展新质生产力的典型案例解析
- 简易呼吸器使用的评分标准
- 医务人员培训手卫生规范课件爱国卫生月
- 电脑耗材实施方案、供货方案、售后服务方案
- 水利工程专家协议书
- 肝硬化伴胃底静脉曲张的护理查房
- 2024年低压电工考试题库低压电工证考试内容
- 5 国行公祭为佑世界和平
- 食堂员工防鼠知识培训
- 工程伦理 课件全套 李正风 第1-9章 工程与伦理、如何理解伦理- 全球化视野下的工程伦理
- 和大人一起读
- 2023届高考统编版历史三轮冲刺复习:中国赋税制度的演变-选择题刷题练习题(含答案解析)
评论
0/150
提交评论