




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普通高中课程标准实验教科书数学必修五苏教版3.1 不等关系教学目标(1)通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;(2)经历由实际问题建立数学模型的过程,体会其基本方法;(3)掌握作差比较法判断两实数或代数式大小;(4)通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯 教学重点,难点(1)通过具体情景,建立不等式模型;(2) 掌握作差比较法判断两实数或代数式大小教学过程一问题情境在日常生活、生产实际和科学研究中经常要进行大小、多少、高低、轻重、长短和远近的比较,反映在数量关系上就是相等与不等两种情况,例如:(1) 某博物馆的门票每位10元,20人以上(含20人)的团体票8折优惠那么不足20人时,应该选择怎样的购票策略?(2)某杂志以每本2元的价格发行时,发行量为10万册经过调查,若价格每提高0.2元,发行量就减少5000册要使杂志社的销售收入大于22.4万元,每本杂志的价格应定在怎样的范围内?(3)下表给出了三种食物,的维生素含量及成本:维生素 (单位/kg)维生素 (单位/kg)成本(元/kg)300700550010043003003某人欲将这三种食物混合成100kg的食品,要使混合食物中至少含35000单位的维生素及40000单位的维生素,设,这两种食物各取kg,kg,那么,应满足怎样的关系?2问题:用怎样的数学模型刻画上述问题?二学生活动在问题(1)中,设人()买20人的团体票不比普通票贵,则有在问题(2)中,设每本杂志价格提高元,则发行量减少万册,杂志社的销售收入为万元根据题意,得,化简,得在问题(3)中,因为食物,分别为kg,kg,故食物为kg,则有 即上面的例子表明,我们可以用不等式(组)来刻画不等关系表示不等关系的式子叫做不等式,常用()表示不等关系.三建构数学1建立不等式模型:通过具体情景,对问题中包含的数量关系进行认真、细致的分析,找出其中的不等关系,并由此建立不等式问题(1)中的数学模型为一元一次不等式, 问题(1)中的数学模型为一元二次不等式, 问题(1)中的数学模型为线形规划问题2比较两实数大小的方法作差比较法:比较两个实数与的大小,归结为判断它们的差的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号四数学运用1例题:例1某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm钢管根,截得的600mm钢管根根据题意,应有如下的不等关系:说明:关键是找出题目中的限制条件,利用限制条件列出不等关系例2某校学生以面粉和大米为主食已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉设每盒快餐需面食百克、米饭百克,试写出满足的条件解:满足的条件为例3比较大小:(1)与;(2)与(其中,)分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负,并根据实数运算的符号法则来得出两个代数式的大小解:(1)(2),所以说明:不等式(,)在生活中可以找到原型:克糖水中有克糖(),若再添加克糖(),则糖水便甜了例4已知比较与的大小解: =-(*)(1) 当时,(*)式,所以 ;(2) 当时,(*)式,所以 ;(3) 当时,(*)式,所以 说明: 1比较大小的步骤:作差变形定号结论; 2实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号2练习:(1)比较 的大小;(2)如果,比较 的大小五回顾小结:1通过具体情景,建立不等式模型;2比较两实数大小的方法求差比较法六课外作业:课本第68页 练习 第1,2,3题(“不求解”改为“并求解”)补充:1比较与的大小;2已知且,比较与的大小普通高中课程标准实验教科书数学必修五苏教版3.2 一元二次不等式(1)教学目标(1)通过函数图象了解一元二次不等式与对应函数、方程的联系;(2)会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图;(3)掌握利用因式分解和讨论来求解一元二次不等式的方法及这种方法的推广运用;(4)掌握将分式不等式转化为一元二次不等式求解 教学重点,难点弄清一元二次方程、一元二次不等式及二次函数三者之间的关系,掌握一元二次不等式的解法,学会将分式不等式转化为一元二次不等式求解教学过程一问题情境在上节问题(2)中,我们得到不等式,像这样只含有一个未知数,并且未知数最高次数是2的不等式叫做一元二次不等式我们知道,一元二次方程和相应的二次函数有着密切的联系,一元二次方程的根就是相应二次函数的图象与轴交点的横坐标那么,一元二次不等式和对应的二次函数是否也有内在的联系?下面先让我们考虑这样一个问题:当是什么实数时,函数的值是:(1)0;(2)正数;(3)负数二学生活动观察函数的图象,可以看出,一元二次不等式的解集就是二次函数的图象(抛物线)位于轴下方的点所对应的值的集合因此,求解一元二次不等式可以先解相应的一元二次方程,确定抛物线与轴交点的横坐标,再根据图象写出不等式的解集第一步:解方程,得;第二步:画出抛物线的草图;第三步:根据抛物线的图象,可知的解集为三建构数学一元二次不等式与相应的函数、相应的方程之间的关系:判别式二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R四数学运用1例题:例 解下列不等式:(1) ; (2) ;(3) ; (4) 解:(1)方程的解为根据的图象,可得原不等式的解集是(2)不等式两边同乘以,原不等式可化为方程的解为根据的图象,可得原不等式的解集是(3)方程有两个相同的解根据的图象,可得原不等式的解集为(4)因为,所以方程无实数解,根据的图象,可得原不等式的解集为归纳解一元二次不等式的步骤:(1)二次项系数化为正数;(2)解对应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集思考:(1)求解一元二次不等式的过程,怎样用流程图来描述?(2)求解一元二次不等式的过程,怎样用流程图来描述?(3)不等式和的解法?说明:对于例1(),还可将其转化为一次不等式(组)来求解,这种求法不仅体现了化归思想,而且更有一般性例2.(1)解不等式;(若改为呢?)(2)解不等式;(3)解不等式(若改为:如何?)解:(1)原不等式 ()(2)即(3)分析:根据实数运算的符号法则,可以化为不等式组求解.原不等式的解集是下面两个不等式组解集的并集:(1) (2)所以原不等式的解集是或说明:本题是将一个比较复杂的不等式转化为不等式组进行求解,在解的过程中应注意何时取交集,何时取并集在这里,集合知识得到了进一步应用2练习:课本第71页 练习第1、2、3题(1)选择题:下列不等式中,解集为实数集的是( )(A) () (C) ()(2)下列命题中正确的有 若是方程的两个实数根,且,那么不等式的解集是;当时,二次不等式的解集是;与的解集相同(3)解下列不等式:; ; 五回顾小结:1一元二次方程、一元二次不等式及二次函数三者之间的关系,掌握一元二次不等式的解法;2掌握利用因式分解和讨论来求解一元二次不等式的方法及这种方法的推广运用;3掌握将分式不等式转化为一元二次不等式求解六课外作业:课本第73页 习题32 第1,2,3,7题补充:已知,设,求,3.2 一元二次不等式(2)教学目标(1)经历从实际情景抽象出一元二次不等式模型的过程,从中体会由实际问题建立数学模型的方法;(2)利用二次函数图象求解含字母的一元二次不等式;(3)让学生充分体会数学知识、数学思想方法在问题解决中的重要作用,进一步提高学习数学的兴趣 教学重点,难点运用一元二次不等式解决实际问题, 学会利用二次函数图象求解含字母的一元二次不等式教学过程一问题情境1.复习:一元二次不等式与相应的函数、相应的方程之间有什么关系?2.解不等式: (1) ; (2);(3) ; (4)3归纳解一元二次不等式的步骤:(1)二次项系数化为正数;(2)解对应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集二数学运用1例题:例1用一根长为的绳子能围成一个面积大于的矩形吗?当长、宽分别为多少米时,所围成的矩形的面积最大?解:设矩形一边的长为,则另一边的长为,由题意,得,即解得所以,当矩形一边的长在(20,30)的范围内取值时,能围成一个面积大于的矩形用表示矩形的面积,则当时,取得最大值,此时即当矩形的长、宽都为时,所围成的矩形的面积最大例2某小型服装厂生产一种风衣,日销货量件与货价元件之间的关系为,生产件所需成本为元,问:该厂日产量多大时,日获利不少于1300元?解:由题意,得,化简得,解之得因此,该厂日产量在20件至45件时,日获利不少于1300元例3汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”刹车距离是分析事故的一个重要因素在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了事后现场勘查测得甲车的刹车距离略超过12m,乙车的刹车距离略超过10m,又知甲、乙两种车型的刹车距离与车速之间分别有如下关系:问:甲、乙两车有无超速现象?分析:根据汽车的刹车距离可以估计汽车的车速解:由题意知,对于甲车,有,即,解得(不合实际意义,舍去),这表明甲车的车速超过30km/h但根据题意刹车距离略超过12m,由此估计甲车车速不会超过限速40km/h对于乙车,有,即,解得(不合实际意义,舍去),这表明乙车的车速超过40km/h,超过规定限速 例4解关于的不等式.例5已知:,(1)若,求的取值范围;(2)若,求的取值范围;(3)若为一元集,求的取值范围;(4)若,求的取值范围;解:由题意 ,(1),;(2),;(3)只有一个元素,2练习:课本第73页 练习 第1题求下列不等式的解集:(1); (2)三回顾小结:1有关一元二次不等式的实际问题,在于理清各个量之间的关系,建立数学模型;2利用二次函数图象求解含字母的一元二次不等式四课外作业:课本第73页 练习 第1题;习题3.2 第4题;第96页 复习题 第1(3)、(4),2题补充:1求不等式的整数解;2解不等式:(1); (2)3求不等式的解集3.2 一元二次不等式(3)教学目标(1)掌握利用二次函数图象求解一元二次不等式的方法;(2)从不等式的解集出发求不等式中参数的值或范围的问题;(3)从二次函数或是一元二次方程的角度,来解决一元二次不等式的综合题教学重点,难点从不等式的解集出发求不等式中参数的值或范围的问题,掌握一元二次不等式恒成立的解题思路教学过程一问题情境复习:一元二次不等式与相应的函数、相应的方程之间有什么关系?(由学生上黑板画出相应表格)二数学运用1例题:例1.已知关于的不等式的解集是,求实数之值解:不等式的解集是是的两个实数根,由韦达定理知:例2已知不等式的解集为求不等式的解集解:由题意 , 即代入不等式得: 即,所求不等式的解集为例3已知一元二次不等式的解集为,求的取值范围解:为二次函数,二次函数的值恒大于零,即的解集为, 即,解得:的取值范围为(适合)拓展:1已知二次函数的值恒大于零,求的取值范围2已知一元二次不等式的解集为,求的取值范围3若不等式的解集为,求的取值范围归纳:一元二次不等式恒成立情况小结:()恒成立()恒成立例4若函数中自变量的取值范围是一切实数,求的取值范围解:中自变量的取值范围是,恒成立 故的取值范围是拓展:若将函数改为,如何求的取值范围?例5若不等式对满足的所有都成立,求实数的取值范围解:已知不等式可化为设,这是一个关于的一次函数(或常数函数),从图象上看,要使在时恒成立,其等价条件是:即解得所以,实数的取值范围是2练习:关于的不等式对一切实数恒不成立,求的取值范围三回顾小结:1从不等式的解集出发求不等式中参数的值或范围的问题;2一元二次不等式恒成立的问题四课外作业:课本第73页 第5、6题; 第96页 复习题 第4、11题补充:1设是关于的方程的两个实根,求的最小值;2不等式的解集为,求不等式的解集;3已知不等式对一切实数都成立,求的取值范围3.3.1 第5课时 二元一次不等式表示的平面区域教学目标(1)了解二元一次不等式的几何意义;(2)会画出二元一次不等式表示的平面区域;(3)会用“选点法”确定二元一次不等式表示的平面区域教学重点、难点(1)二元一次不等式的几何意义;(2)二元一次不等式表示的平面区域的确定教学过程一问题情境1情境:课本第67页引例(3):下表给出了三种食物的维生素含量及成本:维生素A(单位/kg)维生素B(单位/kg)成 本(元)X3007005Y5001004Z3003003某人欲将这三种食物混合成100kg的食品,要使混合食品中至少含35000单位的维生素A及40000单位的维生素B,设X、Y这两种食物各取kg、kg,那么应满足怎样的关系?解答:X、Y这两种食物分别为kg、kg,食物Z为kg,则有,即,又,(介绍二元一次不等式的概念),如果进一步要求如何取值时总成本最小呢?如何解决该问题问题转化为在以上不等式组约束下,求(介绍目标函数概念)的最大值问题要解决以上问题,我们首先要来了解二元一次不等式的几何意义2问题:坐标满足二元一次方程的点组成的图形是一条直线怎样才能快速准确地画出直线呢?(学生答:描两点连成线例如:该直线经过点和,画出经过两点的直线即为所求)教师问:怎样判断点在不在直线上呢?结论:点的坐标满足直线的方程,则点在直线上;点的坐标不满足直线方程,则点不在直线上坐标满足不等式的点是否在直线上呢?这些点在哪儿呢?与直线的位置有什么关系呢?二学生活动通过代特殊点的方法检验满足不等式的点的位置,并猜想出结论:坐标满足不等式的点在直线的上方(教师用几何画板验证以上结论的正确性)三建构数学1进一步验证结论的正确性: 如图,在直线上方任取一点,过作平行于轴的直线交直线于点,点在直线上方,点在点上方,即,点为直线上方的任意一点,所以,直线上方任意点,都有,即;同理,对于直线左下方任意点,都有,即又平面上任意一点不在直线上即在直线上方或直线下方因此,满足不等式的点在直线的上方,我们称不等式表示的是直线上方的平面区域;同样,不等式表示的是直线下方的平面区域练习:判断不等式表示的是直线上方还是下方的平面区域?(下方)下半平面上半平面2得出结论:一般地,直线把平面分成两个区域(如图):表示直线上方的平面区域;表示直线下方的平面区域说明:(1)表示直线及直线上方的平面区域;表示直线及直线下方的平面区域 (2)对于不含边界的区域,要将边界画成虚线四数学运用1例题:例1判断下列不等式所表示的平面区域在相应直线的哪个区域?(用“上方”或“下方”填空)(1)不等式表示直线 的平面区域;(2)不等式表示直线 的平面区域;(3)不等式表示直线 的平面区域;(4)不等式表示直线 的平面区域说明:二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域可以用“选点法”确定具体区域:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域例2画出下列不等式所表示的平面区域:(1); (2)解:(1)(2)两个不等式所表示的平面区域如下图所示:例3将下列各图中的平面区域(阴影部分)用不等式表示出来(其中图(1)中区域不包括轴):解:(1);(2);(3)例4原点和点在直线的两侧,则实数的取值范围是 提示:将点和的坐标代入的符号相反,即,例5(1)若点在直线下方区域,则实数的取值范围为 (2)若点在直线的上方区域,则点在此直线的下方还是上方区域?解:(1)直线下方的点的坐标满足,(2)直线的上方区域的点的坐标满足,点在直线的上方区域,又,点在此直线的上方区域2练习:课本第7677页 练习 第1、2、3题五回顾小结:1二元一次不等式的几何意义;2二元一次不等式表示的平面区域的确定六课外作业:课本第86页 习题3.3 第1(1)(2)题、第2(1)题课本第77页 练习 第4、5题3.3.2 第6课时 二元一次不等式组表示的平面区域教学目标(1)能用平面区域表示二元一次不等式组;(2)能根据平面区域写出相应的二元一次不等式组教学重点、难点用平面区域表示二元一次不等式组教学过程一问题情境1情境:通过前一课的学习,我们已经知道了二元一次不等式的几何意义那么,二元一次不等式组的几何意义又如何呢?二建构数学根据前面的讨论,不等式(1)表示直线及其下方的平面区域;不等式(2)表示直线及其下方的平面区域因此,同时满足这两个不等式的点的集合就是这两个平面区域的公共部分(如下图所示)图图如果再加上约束条件,那么,它们的公共区域为图中的阴影部分三数学运用1例题:例1画出下列不等式组所表示的平面区域:(1) (2)解:(1)不等式表示直线及其下方的平面区域;不等式表示直线上方的平面区域;因此,这两个平面区域的公共部分就是原不等式组所表示的平面区域(2)原不等式组所表示的平面区域即为不等式所表示的平面区域位于第一象限内的部分思考:如何寻找满足(2)中不等式组的整数解?(要确定不等式组的整数解,可以画网格,然后按顺序找出在不等式组表示的平面区域内的格点,其坐标即为不等式组的整数解)例2三个顶点坐标为,求内任一点所满足的条件解:三边所在的直线方程:;:;:内任意一点都在直线下方,且在直线的上方,故满足的条件为例3满足约束条件的平面区域内有哪些整点?答案:画图可得:共有、四个点2练习:课本第80页 练习第1、2、3、4题四回顾小结:1用平面区域表示二元一次不等式组;2平面区域中整点的寻求方法五课外作业:课本第87页 习题3.3 第1(3)(4),2(2)(3),3题;第97页 复习题 第6题3.3.3 第7课时 简单的线性规划问题(1)教学目标(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法教学重点、难点二元线性规划问题的解法的掌握教学过程一问题情境1问题:在约束条件下,如何求目标函数的最大值?二建构数学首先,作出约束条件所表示的平面区域,这一区域称为可行域,如图(1)所示其次,将目标函数变形为的形式,它表示一条直线,斜率为,且在轴上的截距为平移直线,当它经过两直线与的交点时,直线在轴上的截距最大,如图(2)所示因此,当时,目标函数取得最大值,即当甲、乙两种产品分别生产和时,可获得最大利润万元这类求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题其中使目标函数取得最大值,它叫做这个问题的最优解对于只含有两个变量的简单线性规划问题可用图解法来解决说明:平移直线时,要始终保持直线经过可行域(即直线与可行域有公共点)三数学运用1例题:例1设,式中变量满足条件,求的最大值和最小值解:由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域由图知,原点不在公共区域内,当时,即点在直线:上,作一组平行于的直线:,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大由图象可知,当直线经过点时,对应的最大,当直线经过点时,对应的最小,所以,例2设,式中满足条件,求的最大值和最小值解:由引例可知:直线与所在直线平行,则由引例的解题过程知,当与所在直线重合时最大,此时满足条件的最优解有无数多个,当经过点时,对应最小,说明:1线性目标函数的最大值、最小值一般在可行域的顶点处取得; 2线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数多个2练习:课本第84页 练习 第1,2,3题四回顾小结:1简单的二元线性规划问题的解法五课外作业:课本第87页 习题3.3 第4题 第97页 复习题 第7题3.3.3 第8课时 简单的线性规划问题(2)教学目标(1)巩固图解法求线性目标函数的最大、最小值的方法;(2)会用画网格的方法求解整数线性规划问题教学重点、难点用画网格的方法求解整数线性规划问题教学过程一数学运用例1设满足约束条件组,求的最大值和最小值。解:由知,代入不等式组消去得,代入目标函数得,作直线:,作一组平行线:平行于,由图象知,当往左上方移动时,随之增大,当往右下方移动时,随之减小,所以,当经过时,当经过时,所以,例2已知满足不等式组,求使取最大值的整数解:不等式组的解集为三直线:,:,:所围成的三角形内部(不含边界),设与,与,与交点分别为,则坐标分别为,作一组平行线:平行于:,当往右上方移动时,随之增大,当过点时最大为,但不是整数解,又由知可取,当时,代入原不等式组得, ;当时,得或, 或;当时, ,故的最大整数解为或说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定的所有整数值,再代回原不等式组,得出的一元一次不等式组,再确定的所有相应整数值,即先固定,再用制约例3(1)已知,求的取值范围;(2)设,且,求的取值范围。解:(1)不等式组表示的平面区域如图所示,作直线:,作一组平行线:,由图知由向右下方平移时,随之增大,反之减小,当经过点时取最小值, 当经过点时取最大值,由和分别得,所以,(2),由(1)知,例4(备用题)已知的三边长满足,求的取值范围。解:设,则,作出平面区域,由图知:,即二回顾小结:1巩固图解法求线性目标函数的最大值、最小值的方法;2用画网格的方法求解整数线性规划问题。三课外作业:补充:1设满足约束条件组,求的最大值和最小值;2求的最大值,使式中满足约束条件3已知函数满足,求的取值范围。3.3.3 第9课时 简单的线性规划问题(3)教学目标(1)能从实际情境中抽象出一些简单的二元线性规划问题;(2)培养学生的数学应用意识和解决问题的能力教学重点、难点培养学生从实际情境中抽象出一些简单的二元线性规划问题教学过程一问题情境1情境:前面我们用图解法解决了一些求线性目标函数最大值、最小值的问题在现实生活中,我们还会遇到什么样的与线性规划有关的问题呢?二数学运用1例题:例1投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可使获利最大?分析:这是一个二元线性规划问题,可先将题中数据整理成下表,以方便理解题意:资 金(百万元)场 地(平方米)利 润(百万元)A产品223B产品312限 制149然后根据此表数据,设出未知数,列出约束条件和目标函数,最后用图解法求解解:设生产A产品百吨,生产B产品米,利润为百万元,则约束条件为,目标函数为作出可行域(如图),将目标函数变形为,它表示斜率为,在轴上截距为的直线,平移直线,当它经过直线与和的交点时,最大,也即最大此时,因此,生产A产品百吨,生产B产品米,利润最大为1475万元说明:(1)解线性规划应用题的一般步骤:设出未知数;列出约束条件(要注意考虑数据、变量、不等式的实际含义及计量单位的统一);建立目标函数;求最优解(2)对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点例2某运输公司向某地区运送物资,每天至少运送180吨该公司有8辆载重为6吨的A型卡车与4辆载重为10吨的B型卡车,有10名驾驶员每辆卡车每天往返的次数为A型车4次,B型车3次每辆卡车每天往返的成本费为A型车320元,B型车为504元试为该公司设计调配车辆的方案,使公司花费的成本最低解:设每天调出A型车辆,B型车辆,公司花费成本元,则约束条件为,即,目标函数为作出可行域(图略,见课本第83页图3-3-11),当直线经过直线与轴的交点时,有最小值但不是整点由图可知,经过可行域内的整点,且与原点距离最近的直线是,经过的整点是,它是最优解因此,公司每天调出A型车8辆时,花费成本最低2练习:课本第84页 练习 第4题三回顾小结:解线性规划应用题的一般步骤:设出未知数;列出约束条件;建立目标函数;求最优解。四课外作业:课本第88页 习题3.3 第5,6题; 第97页 复习题 第12题3.4.1第1 0课时 基本不等式的证明(1)教学目标(1)了解两个正数的算术平均数与几何平均数的概念,能推导并掌握基本不等式;(2)理解定理的几何意义,能够简单应用定理证明不等式。教学重点,难点:基本不等式的证明及其简单应用。教学过程一问题情境1情境:把一个物体放在天平的盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为,如果天平制造得不精确,天平的两臂长略有不同(其他因素不计),那么并非物体的重量。不过,我们可作第二次测量:把物体调换到天平的另一个盘子上,此时称得物体的质量为。2问题:如何合理地表示物体的质量呢?二学生活动引导学生作如下思考:(1)把两次称得的物体的质量“平均”一下: (2)根据力学原理:设天平的两臂长分别为,物体的质量为,则,相乘在除以,得(3)与哪个大?三建构数学1算术平均数与几何平均数:设为正数,则称为的算术平均数,称为的几何平均数。2用具体数据验证得:基本不等式:即两个正数的几何平均数不大于它们的算术平均数,当两数相等时两者相等。下面给出证明:证法1:当且仅当即时,取“”。证法2: 要证,只要证 只要证,只要证因为最后一个不等式成立,所以成立,当且仅当即时,取“”。证法3:对于正数有,3说明:(1)基本不等式成立的条件是:(2)不等式证明的三种方法:比较法(证法1)、分析法(证法2)、综合法(证法3)(图1)(3)的几何解释:(如图1)以为直径作圆,在直径上取一点, 过作弦,则,从而,而半径(4)当且仅当时,取“”的含义:一方面是当时取等号,即;另一方面是仅当时取等号,即。(5)如果,那么(当且仅当时取“”)四数学运用1例题:例1设为正数,证明下列不等式成立:(1); (2)证明:(1)为正数,也为正数,由基本不等式得原不等式成立。(2)均为正数,由基本不等式得,原不等式成立。例2已知为两两不相等的实数,求证:证明:为两两不相等的实数,以上三式相加:所以,例3已知都是正数,求证证明:由都是正数,得: , ,即例4求证: 证明:, 又, ,即2练习:1.给出下列结论:(1)若则(2)若则(3)若,则(4)若,则其中正确的有 2课本五回顾小结:1算术平均数与几何平均数的概念;2基本不等式及其应用条件;3不等式证明的三种常用方法。六课外作业: 3 1,2,3,5补充:1 已知都是正数,求证:; 2已知都是正数,求证: 3.4.1第11课时 基本不等式的证明(2)教学目标(1)进一步掌握基本不等式;(2)会运用基本不等式求某些函数的最值,求最值时注意一正二定三相等。教学重点,难点基本不等式的灵活运用。教学过程一问题情境1情境: (1)复习:基本不等式;(2)练习:已知,求证:2基本不等式除了常用于证明不等式外,还经常用于求某些函数的最大值或最小值。二建构数学已知都是正数, 如果积是定值,那么当时,和有最小值;如果和是定值,那么当时,积有最大值证明:, ,当 (定值)时, ,上式当时取“”, 当时有;当 (定值)时, ,上式当时取“” 当时有说明:最值的含义(“”取最小值,“”取最大值); 用基本不等式求最值的必须具备的三个条件:一“正”、二“定”、三“相等”。三数学运用1例题:例1(1)求 的最值,并求取最值时的的值。解: 于是,当且仅当,即时,等号成立,的最小值是,此时(2)若上题改成,结果将如何?解: ,于是,从而,的最大值是,此时例2求的最大值,并求取时的的值。解:,则,当且仅当,即时取等号。当时,取得最大值4。例3若,则为何值时有最小值,最小值为多少?解:, , ,=,当且仅当即时例4若,求的最小值。解:,当且仅当,即时取等号,当时,取最小值2练习:(1)若,求的最值;(2)下列函数中,最小值是的是 ( ) , 四回顾小结:1用基本不等式求最值的必须具备的三个条件:一“正”、二“定”、三“相等”,当给出的函数式不具备条件时,往往通过对所给的函数式及条件进行拆分、配凑变形来创造利用基本不等式的条件进行求解;2运用基本不等式求最值常用的变形方法有:(1)运用拆分和配凑的方法变成和式和积式;(2)配凑出和为定值;(3)配凑出积为定值;(4)将限制条件整体代入。五课外作业:课本 4 , 习题3 .4 4补充:1已知,求的最大值,并求相应的值。2已知,求的最大值,并求相应的值。3已知,求函数的最大值,并求相应的值。4已知求的最小值,并求相应的值。3.4.2 第12课时 基本不等式的应用(1)教学目标(1)进一步掌握用均值不等式求函数的最值问题;(2)能综合运用函数关系,不等式知识解决一些实际问题教学重点,难点(1)化实际问题为数学问题;(2)会恰当地运用基本不等式求最值教学过程一问题情境1情境:已知都是正数,给出下面两个命题:如果积是定值,那么当时,和有最小值;如果和是定值,那么当时,积有最大值2问题:(1)两个命题是否都正确?(2)应用此命题必须具备什么条件?二学生活动证明:, ,当 (定值)时, ,上式当时取“”, 当时有;当 (定值)时, ,上式当时取“” 当时有即(1)两个命题是否都正确;(2)应用此命题求最值时必须具备的条件:一“正”、二“定”、三“相等”三数学运用1例题:例1用长为的铁丝围成矩形,怎样才能使所围的矩形面积最大?解:设矩形的长为,则宽为,矩形面积,且由(当且近当,即时取等号),由此可知,当时,有最大值答:将铁丝围成正方形时,才能有最大面积说明:此题也可转化为求二次函数的最大值例2某工厂要建造一个长方体无盖贮水池,其容积为,深为,如果池底每的造价为元,池壁每的造价为元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理解:设水池底面一边的长度为,则另一边长为,水池的总造价为元,根据题意,得:当因此,当水池的底面是边长为的正方形时,水池的总造价最低,最低总造价是元例3某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次需支付运费900元求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?解:设该厂天购买一次面粉,平均每天所支付的总费用为元购买面粉的费用为元,保管等其它费用为,当,即时,有最小值,答:该厂天购买一次面粉,才能使平均每天所支付的总费用最少2练习:1一段长为米的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时菜园的面积最大,最大面积是多少? 2在直径为的圆的内接矩形中,问这个矩形的长、宽各为多少时,它的面积最大,最大面积是多少?四回顾小结:1解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题 五课外作业:书练习第3,4题;习题第7题;补充:某单位建造一间地面面积为的背面靠墙的长方题小房,房屋正面的造价为元,房屋侧面的造价为元,屋顶的造价为元,如果墙高为,且不计房屋背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元3.4.2 第13课时 基本不等式的应用(2)教学目标(1)会运用均值不等式求某些函数的最值,求最大值时注意一正二定三相等教学重点,难点(1)均值不等式的灵活运用教学过程一问题情境1情境:(1)已知直角三角形两条直角边的和等于,求面积最大时斜边的长,最大面积是多少?(2)已知直角三角形的周长等于,求面积的最大值二学生活动(1)设直角三角形两条直角边分别为,则,当时,取“”,即面积最大时斜边的长为,最大面积为(2)设直角三角形两条直角边分别为,则,当时,取“”,最大面积为三数学运用1例题:例1过点的直线与轴的正半轴,轴的正半轴分别交与两点,当的面积最小时,求直线的方程解:点,则直线的方程为,直线过点,由基本不等式得:,当且仅当,即时,取“”,此时的面积取最小值,所求直线的方程为,即例2如图,一份印刷品的排版面积(矩形)为,它的两边都留有宽为的空白
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校燃安全管理制度
- 学校课后班管理制度
- 安保室卫生管理制度
- 安全设备科管理制度
- 安防中控室管理制度
- 定制家具厂管理制度
- 实训室仓库管理制度
- 审批程序等管理制度
- 客车gps管理制度
- 宫腔镜检查管理制度
- 生产工单结单管理制度
- 2025年陕西、山西、青海、宁夏高考物理试卷真题(含答案解析)
- 2025年全国统一高考数学试卷(全国一卷)含答案
- 2025-2030中国过程自动化系统行业市场发展趋势与前景展望战略分析研究报告
- 北京市西城区三年级下学期数学期末试卷(含答案)
- 体育聘用合同协议书模板
- 酒店会议就餐协议书
- 银行证券化信贷资产管理办法
- 带状疱疹培训试题及答案
- 2024年江西省中考生物·地理合卷试卷真题(含答案)
- 车间安全环保培训知识
评论
0/150
提交评论