3.1.2 两角和与差的正弦、余弦、正切公式教案_第1页
3.1.2 两角和与差的正弦、余弦、正切公式教案_第2页
3.1.2 两角和与差的正弦、余弦、正切公式教案_第3页
3.1.2 两角和与差的正弦、余弦、正切公式教案_第4页
3.1.2 两角和与差的正弦、余弦、正切公式教案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.2 两角和与差的正弦、余弦、正切公式 民族中学 王克伟教学目标知识与技能目标:理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.过程与方法目标:让学生亲身经历“从已知入手,研究对象的性质,再联系所学知识,推导出相应公式。”这一研究过程,培养他们观察、分析、联想、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题、解决问题的能力。情感态度与价值观目标:通过对两角和与差的三角恒等变换特点的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。教学重难点教学重点:两角和、差正弦和正切公式的推导过程及运用;教学难点:两角和与差正弦、余弦和正切公式的灵活运用.教学过程1. 新课引入创设情境 引入课题:想一想:由上一节所学的两角差的余弦公式:,同学们很容易想到:那 这节课我们就来学习两角和与差的正弦、余弦、正切的公式:2. 、讲授新课探索新知一两角和的余弦公式思考:由,如何求分析:由于加法与减法互为逆运算,结合两角差的余弦公式及诱导公式,将上式中以-b代b得cos(+)=coscossinsin1、上述公式就是两角和的余弦公式,记作。由两角和的余弦公式:,我们现在完成课前的想一想:探索新知二思考:前面我们学习了两角和与差的余弦,请同学们猜想一下:会不会有两角和与差的正弦公式呢?如果有,又该如何推导呢?在第一章中,我们学习了三角函数的诱导公式,同学们是否还记得如何实现由余弦到正弦的转化呢?结合与,我们可以得到 2、上述公式就是两角和的正弦公式,记作。那将上式中以-b代b得3、上述公式就是两角差的正弦公式,记作。探索新知三用任意角的正切表示的公式的推导:根据正切函数与正弦、余弦函数的关系,我们可以推得:4、上述公式就是两角和的正切公式,同理5、上述公式就是两角差的正切公式,注意:两角和与差的正切公式在应用过程中,1、必须在定义域范围内使用上述公式。 即:tana,tanb,tan(ab)只要有一个不存在就不能使用这个公式。2、注意公式的结构,尤其是符号。三、课堂练习 四、拓展练习与提升例5五、课后作业六、小结1 、两角和与差的正弦、余弦、正切公式、推导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论