




已阅读5页,还剩55页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章数学欣赏,引言整数趣谈从哥德巴赫猜想到归纳思想从同余看无限到有限从勾股定理到费尔马定理从房间安排看一一对应七桥问题与数学抽象由为无理数的证明看数学方法数论与密码学从平面几何系统到数学公理化从谁是罪犯到逻辑推理田忌赛马看数学决策,引言,1认识数学,对数学的认识,已经费时很多了,所得有多有少大多数人都经历了义务教育、高中阶段12年学数学的历史,在大学,理工科、工商、经济类都得学数学,所以每个人花在数学上的时间确实很长实际上数学作为一种实用工具和培养思维能力的方法,深受各个学科的关注和重视文科学生学点数学,对开拓思维方式、提高个人素质都有好处随着信息时代的到来,文理互相渗透如果每个人都能将科学素养与艺术素养两者结合起来,那么对提高个人的综合素质是十分有益的科学的目的在于认识世界、改造世界,艺术的目的在于追求真善美,追求社会、人生和心灵的和谐,4.0.1认识数学,(1)数学成就首先是数学家的成就(2)核武器的产生(3)经济学成为一门非常重要的数学(4)CT,4.0.2数学的特点,数学的特点有三个:抽象性,精确性,应用广泛性,4.0.3数学提供特色的思维方式,抽象化:选出许多不同的现象抽象出它们共有的理性,从而进行专门研究符号化:将通常语言转换成数学语言,使它变得更严密,逻辑性更强用简明的符号语言来表达共同的特征,它具有运算和计算的能力不仅如此,它还是国际语言,功能超过自然语言合理化:从前提、数据、图形等原始资料出发,选择一些推理规则,在特定的规则下进行一系列的推理最优化:考查所有可能,从中寻求最优解数学模型:从现实现象、现有数据中找出数量关系,提升为数学问题,并予以解决,4.1整数趣谈,正整数是大家最早接触的,一些基本概念、运算、性质固然都是大家熟知的有时自觉不自觉的在应用它其实正整数中还是有许多有趣的现象和性质,从而引出了许多著名的数学问题,4.1.1完全数和梅审数,设为一个正整数,若时称整除,记为,称为的因数,称为的倍数设,当仅有二个因数1和时,称为素数(质数)用符号表示的正因数的个数,表示的所有正因数之和,4.1.1完全数和梅审数,例如而当n=6和28时,6的所有正因数之和为12,28的所有正因数之和为56由此可以引发考虑具有下列性质的数,满足,即的所有正因数之和等于2,称满足上述条件的数为完全数(完备数)故6和28是二个完全数,在寻找完全数的过程中,欧几里德发现当n为素数且为素数时,是完全数,但条件为素数的要求太高了真正对的数进行研究的是梅审故将的数称为梅审数,梅审证明当n=2,3,5,7,13,17,19,31时为素数目前只有不到30个梅审素数被发现,1983年,第28个梅审素数被发现,就是n=86243时而已是一个非常大的数,共有25000多位,判断为素数借助于大型计算机目前最大的梅审数为,完全数和梅审素数可能是一一对应的因此研究完全数的问题转化为研究梅审素数的问题对完全数或对梅审数的研究目前尚在进行之中,焦点集中在是否存在无穷多个完全数或者梅审素数目前找到的完全数依赖于梅审素数,所有的已知完全数都是偶数,因此,另一个关于完全数的问题是是否存在奇完全数,4.1.2回文数,回文,也写作“迴文”、“回纹”,利用汉语以单音节语素为主和以语序为主要语法手段的语言特点,将词序排列成回环往复都可以阅读的修辞方法,回文诗就是一种回环往复都能朗读的诗,4.1.2回文数,思妻诗(顺读)枯眼望遥山隔水,往来曾见几心知?壶空怕酌一杯酒,笔下难成和韵诗途路阳人离别久,讯音无雁寄回迟孤灯夜守长寥寂,夫忆妻兮父忆儿,思夫诗(倒读)儿忆父兮妻忆夫,寂寥长守夜灯孤迟回寄雁无音讯,久别离人阳路途诗韵和成难下笔,酒杯一酌怕空壶知心几见曾往来,水隔山遥望眼枯,回文诗的形式新颖而独特,活泼而多变化,读来回环绵延、往复无尽,一般能上下颠倒读、顺读倒读、斜读、交互读等两相思顺读为思妻诗,倒读为思夫诗,运用合二为一的回文诗充分地表现出夫妻缠绵悱恻、难舍难分的相思相爱的情感,阅读时也给人以荡气回肠、意兴盎然的美感,在数学里也有回文数的概念,其特征是一个数从左往右读和从右往左读完全是一样的例如,121,1221,132231等都是回文数可以证明,偶数位的回文数能被11整除回文数有着十分有趣的性质,并且留下让人琢磨不定的问题,4.1.2回文数,设n为任何一个正整数,将n的从右到左而产生的数称为n的逆序数,记为例如n789,则n的逆序数987将n与相加看作对n的一次变换这种变换反复进行下去,就有可能得到一个回文数例如n=397,793n+=1190=,=0911+=2101=,=1012,+=3113经过上述变换,我们将397演变成为一个回文数3113,但是要注意,从一个数变换成为一个回文数需要的变换步数是不可测的,有的数一次两次就可变成回文数,而有些数不知道要变多少次,甚至根本就不知道能不能变成回文数例如从195经过4次变换可得到一个回文数,而197要经过7次变换可得到一个回文数但对196作变换,借助于计算机经过上千上万次的运算,得到一系列的数字,仍得不到相应的回文数然而又无法证明196不可能变成回文数,这也许就是回文数的魅力所在,4.1.3素数,素数的稠密程度有以下统计:100以内25个,1000以内168个,10000以内1229个,10万以内9592个,100万以内78498个,1000万以内664579个统计表明就比例而言越往后素数个数越少,4.1.3素数,两个素数相邻的距离非常随机,可大可小.任何一个数,例100,可构造连续100个整数,每一个都是合数,构造方法为:说明人为可以使两个相邻的素数的距离很远但是存在相邻的素数的距离相差2,为素数也是素数称为孪生素数例:11和13,17和19等都是孪生素数但搞不清这样的素数有多少对,素数的个数有无穷多个上述命题可用反证法和构造法来证明假设素数只有有限个,将所有有限个素数记为构造整数则在A中一定能找到一个素因数q,但从而和只有有限个素数矛盾,4.1.4费尔马数,形如的数称为费尔马数费尔马判言对任意,表示素数,实际上都是素数,而为合数,欧拉给出了的例子,4.1.4费尔马数,和费尔马数有关的问题是尺规作图,即仅用直尺和圆规作正多边形结论为:当为奇数时,当且仅当为费尔马素数时,或若干个互不相同的费尔马素数的乘积时,正边形可以用尺规作出,从哥德巴赫猜想到归纳思想,任何一个大于4的偶数是两个素数之和,任何一个大于7的奇数是三个素数之和目前哥德巴赫猜想的提法为:对充分大的偶数一定能表示为二个奇素数之和.,从哥德巴赫猜想到归纳思想,人类认识的程序总是认识某些特殊现象,然后过渡到一般规律归纳就是从特殊、具体认知推进到一般认知的一种思维方式归纳方法的特点是:(1)归纳的前提是单个的事实、特殊的情况、个别的现象所以归纳思想立足于观察、实验、判断、计算,由此为根据总结出来的结论不一定正确(2)归纳依据现有的不完备知识、现象推断未知的现象,总结出来的结论仅仅是猜测性的(3)归纳是从特殊现象去推断一般现象,因此归纳出来的结论超越了前提所包含的内容,从哥德巴赫猜想到归纳思想,在古希腊称为毕达哥拉斯学派在毕达哥拉斯时代没有记数的符号,依赖于几何直观.常用点子或石子记数,并根据石子摆放的形状对数进行分类,现在称为形数,象这些数叫做三角形数,因为可以排成正三角形,而象等叫做方形数,因为它们可以排成正方形用表示阶三角形数,把两个阶三角形数并在一起得到一个边长分别为n和n+1的矩形点阵显然这个点阵中包含n(n+1)个石子,所以,,从哥德巴赫猜想到归纳思想,但是等都是三角形数,实际上:故得到,从哥德巴赫猜想到归纳思想,用表示阶方形数,,几个图就可归纳出再画,从哥德巴赫猜想到归纳思想,继续观察下面等式:,根据以上等式我们有理由猜测有等式:,从哥德巴赫猜想到归纳思想,已求出了前n个自然数之和和前n个自然数的立方和,自然会想到前个自然数的平方和是什么,这又是数学的魅力事实上,从哥德巴赫猜想到归纳思想,公式发现的过程实际也是归纳总结的过程,这看不出什么规律,必须继续作观察、计算为方便设,,从哥德巴赫猜想到归纳思想,从表中看出应该有,,故,从同余看无限到有限,定义1设m为正整数,a,b为二个整数,若a-b能被m整除,则称a和b关于模m同余记为:否则称a和b关于模m不同余,记为ab(modm),从同余看无限到有限,我国古代历算的干支纪年法,是以60为模的同余问题中,有“物不知其数”一问:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”如用同余记号表示,上述问题就是求同时满足下面三个同余式的正整数x的问题:,,从同余看无限到有限,同余作为一个符号有类似于等号作为符号相似的性质,基本性质为:(1)(2)若,则(3)若,则(4)若,则,(5)若,n为正整数,则,从同余看无限到有限,例1今天是星期天,问从今天起再过天是星期几?解因为,故而25=4*6+1,故即知再过天是星期三现在很容易知道2010年8月8日是星期几了吧,从同余看无限到有限,()数的整除特征设由于a和被3(被9)除时的余数相同同理,由于,故即被11除的余数和被11除的余数相同,从同余看无限到有限,例2分别求12345678910被3除,被11除所得的余数解因为即12345678910被3除的余数为1又因为即12345678910被11除的余数为4,从同余看无限到有限,()求整数的个位数、末两位数已知a为整数,求a的个位数相当于用模10做同余,求末两位数相当于用模100做同余例3求的个位数解即求被10除的余数,只要求的个位数即可故而,故即的个位数为9,从同余看无限到有限,熟知整数有无穷多个,所以在讨论与整数有关的问题时不能用枚举法,而同余能把无限的问题转化成有限问题,即可对整数集进行分类设同余的模为m,把互相同余的数放在一起归为一类这一类数的特点是这些数被m除时有相同的余数不同类中的数被m除所得的余数是不相等的这些类常称模m的剩余类,用来表示任何整数总能表示成:的形式,其中q称为不完全商,r称为余数,从同余看无限到有限,例4连续三个整数之积一定能被3整除证连续三个整数可以写成的形式,设当时,则3整除,从而3整除;当时,则3整除,从而3整除;当时,则3整除,从而3整除综上无论为任何整数,故有3整除,4.4从勾股定理到费尔马定理,直角三角形的两直角边和斜边分别为则有,这就是勾股定理设为不定方程的一组整数解一般解记为,称为一组勾股数,若的最大公因数为1,则称为本原勾股数,都是本原勾股数,从勾股定理到费尔马定理,利用本原勾股数的通项形式,可求出所有勾股数的一般形式前面提到的一些勾股数都是通项的特殊情况根据通项公式可以看到,任何一组本原勾股数中,必有一个能被3整除,中必有一个能被4整除,中必有一个能被5整除此条性质的变相说法是,任一本原勾股数中勾股弦的乘积必能被60整除,从勾股定理到费尔马定理,某些勾股数之间有一种神奇的模式,犹似砌宝塔,需要不断添砖加瓦,而这些添加的材料,竟然全部为0设自然数n,作,则即为一组本原勾股数,从勾股定理到费尔马定理,不定方程的一个重要推广即所谓“费尔马大定理”大约在1637年前后,费尔马在丢番图的算术(译本)的第二卷关于本原勾股数的页边上,写下了他认定的一段结论:“不可能将一个立方数写成两个立方数的和;或者将一个4次幂写成两个4次幂之和;或者,一般地说,不可能将一个高于2次的幂写成两个同次幂的和”接着他又俏皮地写下一个附加的评注:“我对此命题有一个十分美妙的证明,这里空白太小,写不下”这就是说,费尔马认为他证明了下面的结论:不定方程没有正整数解,从勾股定理到费尔马定理,上述评注是在费尔马死后五年的1670年发表的事实上,人们遍寻费尔马的手迹,并没有发现这一“美妙的证明”,而只看到他对于的情形的一个证明费尔马对这一证明颇为得意,命名为“无穷下降法”或许费尔马认为用这种方法可以证明任意的情形但事实远不是那样简单因此只能认为上述结论是费尔马的一个猜想后来很多数学家努力寻求这一结论的证明除了它以外,费尔马提出的所有猜想早已得到解决,后来人们称它为费尔马大定理而它成为了世间智者358年的谜,终于在1994年,由一个英国出生、在普林斯顿大学数学系工作的数学家怀尔斯所证明,4.5从房间安排看一一对应,1普通旅店设想一个普通旅店,各房间依次编了号码:现在住进了一批客人每人住一个房间,没有两个人住同一间房间如果还有房间没有客人住,我们可以断言,房间数比客人数多;如果所有的客人都已住下,发现没有空房间多余,则房间数和客人数相等;如果所有的房间有人住而还有客人未住进去,则客人数多于房间数2希尔伯特旅店设想一个有无穷多个房间的旅店,各房间依次编了号码:,现在来了一个代表团,有无穷多个成员为管理方便,团长为每个成员编了号,这样到达旅店后,团长让每个人住进号码相同的房间,让1号住#1房间,2号住#2房间,我们发现房间和代表团成员一样多:因为每个人有一个房间住,而每个房间都住了一个人,没有房间空着这样,代表团成员的数目和旅店房间的数目相同,如果我们把一个集合的元素的个数称为集合的势则代表团成员组成的集合的势和旅店房间组成的集合的势相同设想等代表团安顿好后,又来了一个人他是否也能住下来呢?答案是肯定的我们让他住进#1号房间,#1房间的客人移到#2房间,#房间的客人移到#3房间,其余的人都依次移到下一个房间于是客人总数和房间仍然一样多,从房间安排看一一对应,从房间安排看一一对应,求解上述问题的过程用到了极其重要的数学思想:一一对应,在引进了无穷集的计数问题后,有限和无限变得极有意思有限集的许多性质、特点在无限集中不再存在但无限集计数仍采用这种一一对应思想和方法来进行设A和B是两个集合,设是具有以下性质的映射,使得A的任一元素有B的唯一元素与之对应,并且B的任一元素,也有A中的唯一元素与之对应,则称为到的一一对应记为:将A集合的元素的个数记为若,则称为n元集若为无限集,则称为A的势有些不同的集合它的势是不同的,即也有“大小”,从房间安排看一一对应,若A集合与集合B间能建立一对一的对应,则称A与B是“对等”的,或者称它们的势是相同的用符号来表示二个集合的对等不难看出,对等概念具有下列性质:自反性:;对称性:若,则;传递性:若,则不难明白,两个有限集只有当它们的元素个数相同时才是对等的由此可见,“其势相同”一语乃是在有限集中元素“个数相同”的直接扩充对于无限集,我们把一切对等的集归为一类,说它们有相同的势,或基数,并用一个记号来表示它,从房间安排看一一对应,设N表示自然数全体的集,而M表示全体偶数的集合,使用下面的方法在这两个集合之间建立一一对应:N与M是对等的,它们的势相同,M是N的真子集结论:“自然数有多少,偶数也有多少”这个现象似乎很奇怪,它不可能在有限集中发生不难检查,集合不与它的任何一个真子集对等这说明有限集与无限集间存在着本质上的差别凡与N集对等的集A都叫作可数集,或称集A是可数的,从房间安排看一一对应,正有理数的集合是可数的.线段AB和AC的势是相同,表明二个线段上的实数一样多.区间和区间的势是相同.区间上点和实轴上的点的个数是相同的.区间中点的个数与自然数集不存在一一对应关系.内的实数要比所有自然数“多得多”中点是不能按标号排队的,即是不可数的而的实数和全体实数一样多,故全体实数集也是不可数的,4.6七桥问题与数学抽象,哥尼斯堡七桥问题:哥尼斯堡城中有一条河,河中有两个岛,7座桥将4块陆地彼此相连如图1所示,图1,七桥问题与数学抽象,居住于该城的居民想做这样的游戏:从4块陆地的任一块出发,经过每座桥一次且仅一次,最后返回原出发地当地人们进行了许多次尝试,都没能获得成功在无奈的情况下,求教于欧拉欧拉很快地解决了这个问题首先欧拉将4块陆地表示成4个点,凡陆地间有桥相连的,便在相应的二个点之间连一条边,从而将图1抽象成图2,图2,这样哥尼斯堡七桥问题可描述为:对图2能否有从任一点出发,经过每一条边一次且仅一次而返回出发点的回路,七桥问题与数学抽象,欧拉证明了这样的回路不存在,也就是上述走法是不存在的理由是从图2的任一点出发,要回到原出发点,要求每个点相关的边的条数必须为偶数,才能保证从一条边进入某个点,再从另一条边走出,一进一出才能回到原出发点而图中看出均有奇数条边与它们相关显然这样回路不存在,七桥问题与数学抽象,中国邮路问题:设想一个邮递员从邮局出发,要将信件投递到指定街道的住户家中,在完成任务后再回到邮局,那么该邮递员应采用什么样的路线,才能投出所有信件,而所走的路程最短?若将邮递员要完成的街道作一个图,在所有的两条或多条街道的汇合处或一条街道的尽头看作一个点,点与点之间一段街道看作一条边,邮局看作一个点,这样得到了一个邮路图和七桥问题一样,如果这个邮路图的每一点与之相关的边都有偶数条从邮局出发走过每一条边一次且仅一次回到邮局,既完成了任务又所走的路最少问题在于这个邮路图不具备上述要求,但任务还得完成这样必须有一条或多条街道要重复回来走,选择哪几条街道重走使一天所走的路最少,这个问题称为中国邮路问题,七桥问题与数学抽象,一个具体问题可以归纳抽象成对图的研究图是由点和线构成的如果每条边上不考虑方向,则称为无向图如果图的每条边上都考虑方向,则称为有向图图和有向图为相关实例或以某种方式相互约束的实例构成的集合提供了数学模型有关图论的第一篇论文就是欧拉关于七桥问题的解答,因此,欧拉被称之为图论之父图论在智力难题的游戏方面有着其历史根源,但重要的是今天它为网络、化学、心理学、生态学、遗传学、计算机科学等的研究提供了工具和思想,七桥问题与数学抽象,数学是从实际问题中而来又为实际问题服务的,它来源于生活,服务于生活而这样转换的主要思想就是数学的重要特征数学抽象最简单的数学抽象来源于数字,小时候老师教我们认识数的时候是最原始的方法,会用2支粉笔、2个指头、2个硬币,用来表明这是2,从而抽象出数字2,并教你如何读,如何写实际上,只一个2是没有内容的,只有当2与某个内容相联系时,才会有它真正的意思随着年龄的增长,人的思维能力的提高,数学的抽象也在逐步提高运算概念的引入摆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030红酒温度计行业项目调研及市场前景预测评估报告
- 汽车维修退股合同9篇
- 2025贵州修文县城镇公益性岗位招聘(4月)考前自测高频考点模拟试题及答案详解(各地真题)
- 2025河南洛阳市洛宁县招聘看护队伍工作人员45人考前自测高频考点模拟试题及一套完整答案详解
- 2025江苏苏州市中医医院、西苑医院苏州医院招聘编外工作人员拟聘考前自测高频考点模拟试题及一套完整答案详解
- 2025贵州毕节市大方县人民医院专项引进高层次急需紧缺人才40人考前自测高频考点模拟试题参考答案详解
- 2025湖北襄阳市枣阳市教育系统招聘研究生及以上高层次人才为高中(中职)教师104人考前自测高频考点模拟试题及一套参考答案详解
- 2025甘肃金昌市第二批引进高层次和急需紧缺人才70人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年上半年河北石家庄高新区公立医疗机构公开招聘劳务派遣工作人员4名考前自测高频考点模拟试题附答案详解(突破训练)
- 2025江苏靖江市招聘教师45人考前自测高频考点模拟试题及答案详解(各地真题)
- 渔船合伙投资协议书
- 大坝帷幕灌浆及充填灌浆施工方案
- 23年成考本科英语试卷及答案
- 冲孔灌注桩施工方案
- 高压输电线路维护保养方案
- 2025年物联网安装调试员(高级)技能鉴定考试题库
- 学校“1530”安全教育记录表(2024年秋季全学期)
- 2025年篮球比赛免责协议书模板
- 新入职教师法律法规培训
- 幼儿园护学岗职责
- 【MOOC】化学与社会-大连理工大学 中国大学慕课MOOC答案
评论
0/150
提交评论