第五章-——条件平差PPT课件_第1页
第五章-——条件平差PPT课件_第2页
第五章-——条件平差PPT课件_第3页
第五章-——条件平差PPT课件_第4页
第五章-——条件平差PPT课件_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-,1,5-1条件平差原理5-2条件方程的列立5-3非线性条件方程的线性化5-4精度评定,第五章条件平差,-,2,基本概念1、必要观测数为了确定观测对象的位置或形状、大小所必须的最少观测数。2、多余观测数实际观测数与必要观测数之差,称为多余观测数。3、闭合差举例说明:测角网,水准网4、条件平差及其目的,-,3,5-1条件平差原理1、条件方程(1)(1)式中A的秩是r,未知数的个数是n,由于rn,所以(1)式是不定方程。那么,如何求解不定方程(1)式呢?2、法方程及其组成2.1按拉格朗日条件极值法组成新函数(2),-,4,补充:矩阵微分公式,-,5,2.2求偏导(3)2.3法方程(4)改正数方程(5)举例水准网如右图:观测值及其权阵如下:m,求各高差平差值,-,6,误差方程法方程法方程的解,-,7,按(5)求改正数V:求观测值的平差值:检核:,-,8,条件平差的求解步骤(1)根据具体问题列条件方程(1)式;(2)组成法方程(4)式;(3)解法方程;(4)按(5)式求改正数V;(5)求观测值的平差值;(6)检核。,教材:51,52,53,习题:5.1.04,5.1.07,-,9,5-2条件方程的列立条件平差的关键是列条件方程,而列条件方程的关键是正确确定必要观测数和条件方程的类型。列条件方程的原则:1、足数;2、独立;3、最简水准网的条件方程1、水准网的分类及水准网的基准有已知点和无已知点两类。要确定各点的高程,需要1个高程基准。2、水准网中必要观测数t的确定(保证足数)有已知点:t等于待定点的个数无已知点:t等于总点数减一3、水准网中条件方程的分类附合条件和闭合条件两类已知点个数大于1:存在附合和闭合两类条件已知点个数小于等于1:只有闭合条件,-,10,4、水准网中条件方程的列立方法(保证独立)(1)、先列附合条件,再列闭合条件(2)、附合条件按测段少的路线列立,附合条件的个数等于已知点的个数减一(3)、闭合条件按小环列立(保证最简),一个水准网中有多少个小环,就列多少个闭合条件,在水准网条件平差中,按以上方法列条件方程,一定能满足所列条件方程足数、独立、最简的原则。,-,11,5、水准网条件方程列立举例,-,12,14,-,13,习题:5.2.10,-,14,GPS基线向量网三维无约束条件平差的条件方程1、GPS基线向量网的观测值:一条基线三个观测值,他们是,n=3s,s是基线数。2、GPS基线向量网三维无约束平差的基准及必要观测数t三个坐标基准。必要观测数为t=3(m-1),m为总点数。所以条件方程的个数为:r=3(s-m)+33、GPS基线向量网三维无约束平差的条件方程的列立按三角形列条件方程,每个三角形中应保证至少有一条基线是新基线,如此列立,可保证足数、独立、最简的原则。,-,15,4、GPS基线向量网三维无约束平差条件方程列立举例图1图2图1中r=3(3-3)+3=3,即三个条件方程。这三个条件方程如下:图2中,r=3(6-4)+3=9,即9个条件方程。,-,16,4、GPS基线向量网三维无约束平差条件方程列立举例n=3*22=66,t=3*(9-1)=24,r=3(22-9)+3=42,-,17,三角网(测角网)的条件方程1、三角网的观测值三角网的观测值很简单,全部是角度观测值。2、三角网的作用确定待定点的平面坐标。3、三角网的类型单三角形、大地四边形、中点多边形、组合图形4、三角网的基准数据在三角测量中,要确定各三角点的平面坐标,必须先建立平面坐标系,只要已知任意一个点的坐标、任意一条边的方位角和任意一条边的边长,那么,这个平面图形在平面坐标系中的位置、大小和方向就唯一地确定了。因此,三角测量中的基准数据为:位置基准2个(任意一点的坐标)、方位基准1个(任意一条边的方位角)以及长度基准1个(任意一条边的边长)。这四个基准数据等价于已知两个点的坐标。,-,18,5、三角网中必要观测数t的确定有足够的基准数据:t=2m,m为待定点点数;无足够的基准数据:t=2(z-2),z为三角网中的总点数。6、三角网中条件方程的类型图形条件(内角和条件):三角形三内角和等于180度;圆周条件(水平条件):圆周角等于360度;极条件(边长条件):由不同推算路线得到的同一边的边长相等。,教材:54,55,习题:5.2.11,5.2.12,-,19,7、三角网中条件方程的列立举例图1中,n=3,t=2,r=1,即一个图形条件。图2中,n=8,t=4,r=4,即三个图形条件,一个极条件。,-,20,图3中,n=15,t=8,r=15-8=7,即5个图形条件,一个圆周条件,一个极条件。由以上三例知,三角形只有图形条件;大地四边形有图形条件和极条件两类条件;只有中点多边形才有全部的三类条件。,-,21,用一般符号列出图4的条件方程:n=33t=14,3个大地四边形12个,左多边形2图1极1圆,右1极1圆1图(FIG),-,22,三边网(测边网)的条件方程1、三边网的观测值三边网的观测值也很简单,全部是边长观测值。2、三边网的作用也是确定待定点的平面坐标。3、三边网的类型单三边形、大地四边形、中点多边形、组合图形4、三边网的基准数据三边网与三角网的区别是观测值。由于在三边测量中,观测值中带有长度基准。所以,三边测量中不需要长度基准。因此三边网的基准数据为:位置基准2个(任意一点的坐标)、方位基准1个(任意一条边的方位角),即三个基准。,-,23,5、三边网中必要观测数t的确定有足够的基准数据:t=2m,m为待定点点数;无足够的基准数据:t=2z-3,z为三角网中的总点数。单三角形:t=233=3,而n=3,故r=n-t=3-3=0大地四边形:t=243=5,而n=6,故r=n-t=6-5=1中点N边形:t=2(N+1)3=2N-1,而n=2N,故r=n-t=2N-2N+1=1。以上各式表明:在测边网中,单三角形不存在条件,大地四边形和中点多边形都只一个条件。故测边网中条件方程的个数等于大地四边形和中点多边形的个数之和。6、三边网中条件方程的列立可按角度闭合、也可按边长闭合、还可按面积闭合列立。按角度闭合:,-,24,测边网条件在测边网中,按角度闭合时条件方程为:对于以上按角度表示的条件方程,可以用余弦定理解出各个角度,再按台劳级数展开可到其线性形式。但习惯上却是先导出角度改正数与边长改正数的关系,然后代入为此,下面来推导角度改正数与边长改正数的关系。,-,25,如图,由余弦定理知:微分得:由图知,-,26,故有:将微分换成改正数,并将弧度换成角度,得:上式称为角度改正数方程。它具有明显的规律:任意角度的改正数,等于其对边的改正数分别减去两邻边的改正数乘以其邻角的余弦,然后再除以该角至其对边的高,并乘以常数。按此规律,可得:,-,27,大地四边形将其代入,得,-,28,中点多边形将其代入,得,-,29,单一附合导线的条件方程1、导线的观测值导线的观测值由角度和边长两类观测值组成。2、单一附合导线的形状3、单一附合导线的必要观测数t=2m,m为待定点点数。,-,30,4、单一附合导线的条件方程个数观测值的个数:角度m+2个;边长m+1个;观测值总数n=2m+3个。条件方程个数:r=n-t=2m+3-2m=3即不论待定点点数m为多少,单一附合导线的条件方程个数固定为3。5、单一附合导线的条件方程一个方位角条件两个坐标条件,-,31,GIS数字化数据采集中,折角均为90度的N边形的条件方程1、观测值观测值为N个顶点的坐标,其个数为n=2N。2、必要观测个数t=N+13、多余观测个数r=n-t=2N-N-1=N-14、条件方程的类型N-1个直角条件。,-,32,摄影测量,影像中的几何信息,地物几何位置,模型重建,几何量测,-,33,X,Y,Z,a(x,y),x,y,z,S(Xs,Ys,Zs),A(X,Y,Z),共线条件,-,34,M,上图表示某相机在空中对地面进行摄影,uvw为相机本身的坐标系,XYZ为地面坐标系,S为相机镜头中心,SM为相机成像面中心与镜头中心连线。编程题目中的未知数即为图中S在XYZ坐标系下的位置及矢量SM的三个角度,或者说uvw到XYZ的变换关系。,-,35,-,36,立体摄影测量:目的,x1y1,XYZ,已知量,未知量,x2y2,-,37,X,Y,Z,a1(x1,y1),x1,y1,z1,S1,A(X,Y,Z),a2(x2,y2),z2,y2,x2,S2,前方交会,-,38,5-3非线性条件方程的线性化1、问题的提出由前面列出的条件方程知,水准网平差、三维无约束平差中的条件方程,以及三角网平差中的图形条件和圆周条件、单导线中的方位角条件等都是线性方程。而极条件、坐标条件等都是非线性条件。因为条件平差中要求条件方程必须为线性形式,所以,平差前必须将非线性条件转化为线性条件。这一转化工作称为非线性条件方程的线性化。2、线性化的方法将非线性条件方程按台劳级数展开,略去二阶以上各项,即得条件方程的线性形式。,-,39,设非线性条件方程为:为了将其按台劳级数展开,将观测值的平差值写为观测值加改正数的形式,即:于是,有令,-,40,于是,非线性条件方程的线性形式为:3、几种非线性条件方程的线性形式极条件:在图5-4中,极条件为线性化得:,-,41,两边同乘,得化简后的线性形式为:单一附合导线的坐标条件:,-,42,上图的纵坐标条件为:式中是方位角平差值和边长平差值的函数,即将上式按台劳级数展开,略去二阶以上各项即可,-,43,直角条件:按台劳级数展开,取至一次项,得,-,44,因为,-,45,所以,直角条件方程为:式中:,-,46,在计算图形条件的系数和闭合差时,一般取边长改正数的单位为cm,高的单位为km,取2.0626,此时闭合差w的单位为秒。由观测边长计算系数中的角值,可按余弦定理或下式计算式中高按下式计算,-,47,5-4精度评定目的:评定观测值的实际精度、观测值平差值函数的精度1、观测值L的精度2、单位权方差的估值3、的计算(1)、直接计算(2)、用常数项与联系数,-,48,4、观测值函数的协因数条件平差中的基本向量W、K、V、都是观测向量L的函数,且由于观测向量L的协因数已知,所以应用协因数传播律可得:,-,49,-,50,-,51,令则,-,52,5、平差值函数的协因数经条件平差后得到了观测值的平差值,需要提交的却是控制点的坐标或高程的平差值,他们都是观测值的平差值函数。因此,有必要研究平差值函数的协因数。设平差值函数的协因数为:对其全微分,得:,-,53,式中为用观测值L算出的偏导数值。于是,应用协方差传播律可得:所以,平差值函数的中误差为:,教材:56,57,习题:5.4.42,-,54,举例某平坦地区水准网如右图所示,已知点A高程为10.000m,各独立观测值及其距离:mkm求各点高程的平差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论