




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
无铅压电陶瓷无铅压电陶瓷的研究现状与发展前景 无铅压电陶瓷的研究现状与发展前景 Tadashi Takenaka,Hajime Nagata Faculty of Science and Technology,Tokyo University of Science,Y amazaki 2641,Nada , Chiba-ken 278-8510,Japan 摘要:钙钛矿结构的陶瓷和铋层结构BLSF 陶瓷因具有优良的绝缘性、铁电性和压电性,成为污染环境的含铅压电陶瓷的良好替代材料。钙钛矿陶瓷广泛应用于高能换能器,具有较高的压电常数d 33(300pC/N)和高的居里温度Tc (200) 。采用固相法制备的BaTiO 3,即(1-x ) BaTiO 3-x (Bi0.5K 0.5)TiO 3BTBK-100x陶瓷, Tc 随着x 的增加而增加。BTBK-20+MnCO30.1wt%陶瓷显示出高的Tc (200),同时机电耦合系数k 33=0.35。固相法得到的a Bi 0.5Na 0.5)TiO 3-b BaTiO 3-c Bi 0.5K 0.5)TiO 3BNBK(100a /100b /100c ) 陶瓷, 相对于BNBK(85.2/2.8/12)的d 33和Tc 分别为191pC/N和301。另一方面,BLSF 陶瓷是优良的高温压电传感器和具有高机械品质因数Qm 的陶瓷共振器,并且在低温下谐振频繁(Tc-f r) 。施主掺杂Bi 4Ti 3O 12的陶瓷例如Bi 4Ti 3-x Nb x O 12BINT-x和Bi 4Ti 3-x V x O 12BIVT-x表现出高的Tc (650)。BINT-0.08陶瓷初始晶粒的k 33值为0.39并在350时保持这一值。基于固相体系的Bi 3TiTaO 9(BTT)Srx -1Bi 4-x Ti 2-x Ta x O 9SBTT2(x )(1x 2)在x =1.25的P 型半导体中表现出高的Qm 值(=13500)。 关键词:铁电性,压电性,钙钛矿,铋层结构铁电体 1. 前言 压电性是电子和机电材料表现出来的重要性质。应用最广泛的压电材料是三元系的PbTiO 3-PbZrO 3(PZT)。然而,近年来为了环境保护人们期望使用无铅材料。例如,欧盟将在电子和电器设备(WEEE)方面执行立法草案, 限制有毒物质(RoHS)的排放和控制生活交通工具(ELF)。因此,无铅压电材料作为PZT 陶瓷的替代材料吸引了广泛的注意力。 无铅压电材料,如压电单晶,有钙钛矿结构的铁电陶瓷,以及钨青铜和铋层结构铁电陶瓷(BLSF)已有报道。然而,没有哪种材料显示出优于PZT 体系的压电性能。为了替代PZT 体系,要求划分和发展各种应用领域的压电性能。例如,钙钛矿陶瓷能够应用于高能态的调节器。另一方面,铋层结构铁电陶瓷(BLSF)可应用于陶瓷过滤和谐振器的可选择材料。 本文将详细介绍钙钛矿铁电陶瓷和BLSF 陶瓷的绝缘性、铁电性和压电性,这两种陶瓷是可优先选择并能减少对环境损害的无铅压电材料。 2. 实验 陶瓷样品由传统固相反应烧结技术制备。初始材料为纯度达99%以上氧化物或碳酸盐。原料球磨后在600-850预烧1-2小时进行混合。预烧后,压制成直径20mm 厚10mm 的圆片,于900-1350的空气中烧结2-4小时。初始晶粒样品通过热腐蚀(HF)方法制备。晶粒取向度F 由Lotgering 因子进行计算。 样品经抛光和热腐蚀后,其相结构通过CuK以每分钟1的扫描速度辐射进行X 射线衍射分析。最后,显微结构通过扫描电镜进行观察。烧结过程中的质量损失由TG-DTA 分光计进行分析。由Ag-Pd 加热粘贴制成的电极测试电性能, 如绝缘性、铁电性和压电性。介电常数(r ) 和绝介电损耗(tan) 通过自动LCR 测试仪在1MHz 下测量, 这一系统在温度由绝对温度至900的范围内存在多频LCR(YHP4275A)。在绝对温度下,电滞回线采用50Hz 的Sawyer-Tower 回路标准观察。此温度下的电阻率可以通过高电阻计测得(YHP4329A和4339B) 。 用于测量压电性能的样品在使用范围Ep=7-12V/mm温度Tp=RT-300下在硅油中加热7-10分钟。压电性能通过基于IEEE 标准的原则用谐振与反谐振的方法测量,采用阻抗分析仪(YHP4192A和4194A) 。(33)型纵向振动是通过对4mm2mm2mm 的矩形样品的测量完成的。机电耦合系数由谐振和反谐振频率计算得出。自由介电常数取决于样品电极1kHz 时的电容。弹性常数由频率常量和测量密度中计算。最后,压电常数由机电耦合系数、自由介电常数和弹性常数以相应的比例关系计算得到。 3. 结果与讨论 3.1 钙钛矿结构铁电性 钙钛矿型铁电体如BaTiO 3(BT),(Bi1/2Na 1/2)TiO 3和KnbO 3都是人们熟悉的无铅压电材料。这些陶瓷表现出大的压电常数,期望成为无铅压电材料中的调节器和高能换能器。然而,它们也存在一些问题,如低居里温度,极化困难和相对密度较低等。 3.1.1 BaTiO3基陶瓷 BaTiO 3(BIT)是最早发现的具有铁电性的钙钛矿结构。这种陶瓷有相对高的机电耦合系数(k 33), 部分用于声纳。然而,BIT 的居里温度较低(Tc =120) 。因此,这类陶瓷的工作温度范围对于实际应用而言较为狭窄。为了扩大工作温度范围,就需要使BaTiO 3基体陶瓷的Tc 增加,研究基于固相系统的(1-x ) BaTiO 3-x (Bi0.5K 0.5)TiO 3的绝缘性和压电性能。有报道称(Bi0.5K 0.5)TiO 3(BKT)的Tc 为380。 0x1时BTBK 陶瓷的X 射线衍射图谱显示具有单相钙钛矿结构。图1给出BTBK-100x 陶瓷的介电常数和介电损耗。在BTBK-100x 中,Tc 随着x 的增加而线形增加,如图2所示。BTBK-20显示出的Tc 高于200。然而,在BTBK-100x 中, 绝对温度和居里温度下的介电常数r 都随着x 的增大而增加。 图3给出BTBK 陶瓷作为功能陶瓷添加Mn 后的电阻率。x=0.1时达到最大值。图4给出阻抗频率与BTBK20+Mn(0.1wt%)的Z(数量绝对值Z, 相) 的关系。 表1概括了BTBK 陶瓷的居里温度和压电性能。BTBK20+MnCO3(0.1wt%)(Tc=233) 的机电耦合系数和压电常数分别为0.35和59pC/N。另一方面,BTBK5+Mn(0.1wt%)(Tc=174) 的压电常数为117pC/N。 3.1.2 (Bi1/2Na 1/2)TiO 3基陶瓷 钛酸铋钠(Bi1/2Na 1/2)TiO 3(BNT)陶瓷表现出大剩余极化的强铁电性,Pr=38C/2,居里温度Tc=320。BNT 陶瓷的压电性能数据显示在持续工作时有欠缺,因为这类陶瓷极化困难。另一方面,BNT 陶瓷需要高于1200的烧结温度来获得致密实体。考虑到Bi 离子在烧结过程中温度高于1200时发生蒸发,低电阻率导致极化处理的欠缺。从温度曲线的测量中发现,温度超过1130时Bi 离子的蒸发造成质量损耗。所以,BNT 陶瓷在1100时烧结。对于这种陶瓷,在1100保温时间达到100小时将获得高达95%的密度。这种陶瓷的k 33和d 33分别为0.47和91pC/N,这些值在上述条件下大部分是相同的。鉴于这些情况,能够清晰说明BNT 陶瓷做为无铅压电具有良好的压电性。 近年来的研究发现,固相法获得的BNT 基陶瓷的极化更易进行。特别地,有准同型相界(MPB)的BNT 陶瓷被期望获得好的压电性。BaTiO 3和KBT ,(Bi1/2K 1/2)TiO 3是人们熟悉的正方晶系的无铅压电材料。二元体系,即(1-x )(Bi0.5K 0.5)TiO 3-x BaTiO 3(BNBT-100x)和(1-y )(Bi0.5K 0.5)TiO 3-y (Bi0.5K 0.5)TiO 3 (BNKT-100y)已经由Takenaka et.al. 和Sasaki et.al. 报道。对于BNBT-100x 和BNKT-100y 当x=0.06-0.07时存在准同型相界。对于三元体系,(Bi1/2Na 1/2)TiO 3- BaTiO 3-(Bi0.5K 0.5)TiO 3(BNBK)的绝缘性和压电性的研究, 集中在准同型相界处。 图5给出BNBK 体系在准同型相界附近各相的关系。在准同型相界区域,BNBT-6和BNKT-16的MPB 在菱形晶系存在,BNBT-7和BNKT-20在正方晶系存在。这一实验的组分制备可表示如下:a (BNBT-6)-(1-a )(BNBK-16)(BNBK1-a ) a (BNBT-7)-(1-a )(BNBK-20)(BNBK2-a ) 对于每一系统, 分别的, a =0,0.2,0.4,0.6,0.8和1 通过X 射线衍射发现, 在菱方晶系和正方晶系中MPB 存在于BNBK1和 BNBK2系统之间。BNBK1和BNBK2系统的居里温度近似为常量300。 图6给出BNBK1和BNBK2陶瓷随组分变化而变化的压电常数。所有的BNBK2的压电常数值都比BNBK1的要大。在BNBK2-0.4, 显示出压电常数的最大值191pC/N。在准同型相界区域周围获得压电常数有最大值。据称0.852BNT-0.12BKT-0.028BT(BNBK2-0.4)是具有相对大的压电常数(191pC/N)和应用于高居里温度(301) 的无铅调节器的可选择材料之一。 3.1.3 KNbO3基陶瓷 铌酸钾KnbO 3(KN)在室温下具有斜方晶系,在-10,225和425时发生相变,由菱方斜方正方立方转变。单个KN 晶体具有高的压电活性。然而,通过普通加热而获得致密KN 基陶瓷却是困难的。为获得致密KN 基陶瓷,研究热锻法(HP)和掺杂添加剂的液态烧结方法。目前,已经能够获得致密KN 基陶瓷,然而,由于极化困难使得压电性较难获得。 另一方面,铌酸钾钠的电性能,KNbO 3-NaNbO 3体系,已经由Egerton 和他的同事们报道了。他们对于这一体系的陶瓷的研究揭示了相对低的介电常数和高的机电耦合系数在组分范围较宽时能够获得。然而,他们认识到获得期望中陶瓷结构是困难的,因为这些材料在空气中烧结需要长时间保温来获得足够的致密化。Tashiro et.al. 称(K0.47Pb 0.03Na 0.5) NbO 3陶瓷在1170加热40小时将显示出高的密度,机电耦合系数kp =0.44和Qm =0.152。这种陶瓷的谐振和反谐振特性在图7中反映。 3.2 铋层结构铁电体 铋层结构铁电体(BLSF)作为电子材料如绝缘、压电或是热电材料从应用的观点来看是很具有吸引力的, 因为BLSF 具有低的绝缘系数s ,高的居里温度Tc ,在机电耦合系数上有大的各向异性。因此,BLSF 陶瓷是无铅压电应用物的优先可选择材料,这些应用物可以是具有高居里温度的压电传感器、过滤器、共鸣器或热电传感器。 3.2.1 Bi4Ti 3O 12体系 Bi 4Ti 3O 12是典型的人们熟悉的BLSF 。考虑到各向异性,Cummins 和Cross 称BIT 单晶a 和c 轴周围的自发极化为50和4C/c。因此, 可以认为BIT 单晶有良好的压电性。然而,测量BIT 单晶的压电性是困难的,因为制备的BIT 单晶的形状通常是很薄的薄片。另外,BIT 陶瓷完全可靠的压电性还未见报道,因为在某些方面还存在问题,如电阻率较低和矫顽场较大。为解决这些问题,向BIT 陶瓷中添加Nb 5+和V 5+以获得较高电阻率。本文研究Bi 4Ti 3-x Nb x O 12BITN-x和Bi 4Ti 3-x V x O 12BITV-x陶瓷的绝缘性、铁电性和压电性。更进一步,讨论了通过热铸方法制备的BITN 和BITV 织构陶瓷在它们压电性上的晶向影响。 BITN 和BITV 陶瓷的X 射线衍射图谱反映了层数m=3时的铋层结构。Nb 2O 5和V 2O 5的在x 0.12时的衍射峰并没有到。与理论密度相比,BITN 和BITV 陶瓷都具有高的相对密度,高于95%。 图8给出了不同Nb 5+和V 5+浓度下的居里温度。BIT 陶瓷(x=0)的Tc 为683, 并随着Nb 5+和V 5+的浓度增加而变低。因此,可以认为Nb 5+和V 5+占据了钙钛矿晶胞在铋层结构中的B 位置。然而,与BITN 陶瓷相比,BITV 的Tc 随着V 5+浓度的增加趋向饱和。因此,可以认为V 5+难以替换Ti 4+。过量的V 5+存在于晶界并且随V 5+增加呈三倍增长。这一根据是通过比较Ti 、Nb 和V 的离子半径而得出的。Ti 4+、Nb 5+和V 5+离子的半径分别为0.605,0.64和0.54埃。可以认为,V 离子的半径对于替换钙钛矿结构在铋层结构中的B 位置而言太小。BIT(x=0)的电阻率约为1010-1011, 同时,BITN 和BITV 陶瓷的电阻率为1013-1014。添加一些原料物质导致电阻率加强。适宜的中性电荷可以在BITN-0.08和BITV-0.01的每一组分中观察到。 图9反映了随添加的Nb 5+和V 5+的浓度(x)不同,机电耦合系数k 33的变化情况。在组分x=0.08时BINT 的k 33达到饱和值(0.200,而BITV-0.02的k 33为0.25,这一值对随机方向的BLSF 陶瓷而言相对较高。 图10给出BITN-0.08和BITV-0.04陶瓷在垂直平面(光滑) 的HF 和OF 陶瓷的X 射线衍射图谱。能够很清晰看到HF 陶瓷的晶粒在沿着c 轴的方向上生长,因为HF 样品在(00l ) 面上的强度很高。相对的,BITN-0.08和BITV-0.04陶瓷的晶向指数F 分别为0.91和0.75。 图11给出了BITN-0.08和BITV-0.04陶瓷随频率变化的阻抗Z 。k 33的值对于BITN-0.08和BITV-0.04陶瓷分别增加到0.39和0.38。这些值是无织构(OF)类别的两倍并高于理论值(k 33=0.27)。在这项研究中,没有得到BIT 陶瓷的k 33饱和值,因为在极化过程中有电子被破坏。 图12给出了热腐蚀后的BITN-0.08和BITV-0.04陶瓷晶向指数F 和k 33的关系。采用k 33样品的的X 射线衍射图谱可以获得精确的晶粒取向度,即XRD 直接作用在k 33样品上,体现在图13。从测量中可以清晰地看出k 33和晶粒取向度F 的关系。随着F 的增加k 33呈线形增加。从这一点,晶粒取向度F=1的样品的k 33值可以通过外推法得到约为0.42。 图14反映了随温度变化而变化的k 33和阻抗的峰值与低值的比率P/D,它们是从BITN-0.08和BITV-0.04陶瓷的谐振和反谐振曲线中获得的。从绝对温度RT 到650k 33的值保持高于0.35。然而,当温度高于350时,P/D的值迅速下降。 换言之,P/D值高于1000的剧烈的共振和 _振峰值保持直到350。可以明确地知道,HF BITN-0.08陶瓷的压电性能从绝对温度RT 到350保持在较高水平。对于无铅高温压电材料,基体组元固溶BIT 的陶瓷是可以优先选择的对象。 3.2.2 Bi3TiTaO 9体系 在一些早期的报道中,已获得高机械品质因数的BLSF 陶瓷。例如,Nanao et al. 和Shibata et al.称,固相反应得到的t 型Bi 3TiNbO 9-BaBi 2Nb 2O 9的Qm 为9000,相对的,固相反应获得的p 型SrBi 2Ta 2O 9-CaBi 2Ti 2O 9的Qm 为11000。这些特征在系统的底部元件中,Bi 3TiNbO 9和CaBi 2Ti 2O 9都显示出超过800的居里温度Tc 。这些数据显示高的Qm 能够通过有高Tc 的BLSF 来获得。基于这种假设,研究有较高居里温度的Bi 3TiTaO 9(BTT)(m=2)基固相处理系统的绝缘性, 铁电性和压电性。三种陶瓷体系选择如下 Bi 3TiTaO 9(BTT)-SrBi2Ta 2O 9-(SBTa)系统 Srx-1Bi 4-xTi 2-xTa x O 9SBTT2(x)(1x2) 掺杂La
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子数据取证分析师节假日前安全考核试卷含答案
- 人工智能辅助教学资源开发方案
- 高中硬笔书法课教学案例与活动方案
- 人教版三年级数学综合测试卷合集
- 小学数学三年级说课稿与教学反思
- 2025-2030动态遮阳玻璃对建筑采光舒适度的影响评估报告
- 2025-2030动力锂电池正极材料技术迭代与供应链安全报告
- 2025-2030动力锂电池回收利用政策环境与商业模式创新研究报告
- 2025-2030动力电池隔膜材料技术迭代与产能扩张研究
- 2025-2030动力电池负极材料技术迭代与新型硅基方案评估报告
- 2025年度反洗钱阶段考试培训试考试题库(含答案)
- 收割芦苇施工方案
- 普通黄金现货购买合同8篇
- 三力测试考试题库及答案视频讲解
- 2025年河南省人民法院聘用书记员考试试题及答案
- 2025年中学教师资格考试《综合素质》核心考点与解析
- 口腔冠延长术
- 部编版七年级语文上册《闻王昌龄左迁龙标遥有此寄》课件
- 诊所经营管理课件
- 2024年江苏省连云港市辅警协警笔试笔试模拟考试(含答案)
- 铁路工务介入管理办法
评论
0/150
提交评论