




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学高考总复习正弦定理与余弦定理习题及详解一、选择题1(2010聊城市、银川模拟)在ABC中,a、b、c分别是三内角A、B、C的对边,且sin2Asin2C(sinAsinB)sinB,则角C等于()A. B.C. D.答案B解析由正弦定理得a2c2(ab)b,由余弦定理得cosC,0C,C.2(文)(2010泰安模拟)在ABC中,若A60,BC4,AC4,则角B的大小为()A30 B45C135 D45或135答案B解析ACsin604244,故ABC只有一解,由正弦定理得,sinB,44,BA,B45.(理)在ABC中,角A、B、C的对边分别是a、b、c,A,a,b1,则c()A1 B2C.1 D.答案B解析bsinA10,c2.故选B.3在ABC中,角A、B、C的对边分别是a、b、c,若a2,b2,且三角形有两解,则角A的取值范围是()A. B.C. D.答案A解析由条件知bsinAa,即2sinA2,sinA,ab,AB,A为锐角,0A.点评如图,AC2,以C为圆心2为半径作C,则C上任一点(C与直线AC交点除外)可为点B构成ABC,当AB与C相切时,AB2,BAC,当AB与C相交时,BAC,因为三角形有两解,所以直线AB与C应相交,0BAC0,b0,ab0,所以ab.5(文)(2010天津理)在ABC中,内角A、B、C的对边分别是a、b、c,若a2b2bc,sinC2sinB,则A()A30 B60C120 D150答案A解析由余弦定理得:cosA,sinC2sinB,c2b,c22bc,又b2a2bc,cosA,又A(0,180),A30,故选A.(理)(2010山东济南)在ABC中,角A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则角B的值为()A. B.C.或 D.或答案D解析由(a2c2b2)tanBac得,tanB,再由余弦定理cosB得,2cosBtanB,即sinB,角B的值为或,故应选D.6ABC中,a、b、c分别为A、B、C的对边,如果a、b、c成等差数列,B30,ABC的面积为0.5,那么b为()A1 B3C. D2答案C解析acsinB,ac2,又2bac,a2c24b24,由余弦定理b2a2c22accosB得,b.7(2010厦门市检测)在ABC中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a1,b,则SABC等于()A. B.C. D2答案C解析A、B、C成等差数列,B60,sinA,A30或A150(舍去),C90,SABCab.8(2010山师大附中模考)在ABC中,cos2(a、b、c分别为角A、B、C的对边),则ABC的形状为()A直角三角形 B正三角形C等腰三角形 D等腰三角形或直角三角形答案A解析cos2,sinCcosBsinA,sinCcosBsin(BC),sinBcosC0,0B,C0,cosB0知A、B均为锐角,tanA1,0A,0B,C为最大角,由cosB知,tanB,BA,b为最短边,由条件知,sinA,cosA,sinB,sinCsin(AB)sinAcosBcosAsinB,由正弦定理知,b.10(2010山东烟台)已知非零向量,和满足0,且,则ABC为()A等边三角形B等腰非直角三角形C直角非等腰三角形D等腰直角三角形答案D解析cosACB,ACB45,又0,A90,ABC为等腰直角三角形,故选D.二、填空题11(文)判断下列三角形解的情况,有且仅有一解的是_a1,b,B45;a,b,A30;a6,b20,A30;a5,B60,C45.答案解析一解,asinB1,有一解两解,bsinA6,无解一解,已知两角和一边,三角形唯一确定(理)在锐角ABC中,边长a1,b2,则边长c的取值范围是_答案c0,c25.0c0,c23.c.综上,c.12(2010上海模拟)在直角坐标系xOy中,已知ABC的顶点A(1,0),C(1,0),顶点B在椭圆1上,则的值为_答案2解析由题意知ABC中,AC2,BABC4,由正弦定理得2.13(文)(2010沈阳模拟)在ABC中,角A、B、C的对边分别是a、b、c,若b2c2a2bc,且4,则ABC的面积等于_答案2解析b2c2a2bc,cosA,4,bccosA4,bc8,SACABsinAbcsinA2.(理)(2010北京延庆县模考)在ABC中,a、b、c分别为角A、B、C的对边,若ac2b且sinB,当ABC的面积为时,b_.答案2解析ac2b,a2c22ac4b2(1)SABCacsinBac,ac(2)sinB,cosB(由ac2b知B为锐角),a2c2b2(3)由(1)、(2)、(3)解得b2.14(2010合肥市质检)在ABC中,则角B_.答案解析依题意得sin2Asin2Bsin(AB)(sinAsinC)sinAsinCsin2C,由正弦定理知:a2b2acc2,a2c2b2ac,由余弦定理知:cosB,B.三、解答题15(文)(2010广州六中)在ABC中,角A、B、C所对的边分别为a、b、c,且满足cos,3.(1)求ABC的面积;(2)若bc6,求a的值解析(1)cos,cosA2cos21,sinA.又由3得,bccosA3,bc5,SABCbcsinA2.(2)bc5,又bc6,b5,c1或b1,c5,由余弦定理得a2b2c22bccosA20,a2.(理)(2010山东滨州)已知A、B、C分别为ABC的三边a、b、c所对的角,向量m(sinA,sinB),n(cosB,cosA),且mnsin2C.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且()18,求边c的长解析(1)mnsinAcosBsinBcosAsin(AB)在ABC中,由于sin(AB)sinC.mnsinC.又mnsin2C,sin2CsinC,2sinCcosCsinC.又sinC0,所以cosC.而0C,因此C.(2)由sinA,sinC,sinB成等差数列得,2sinCsinAsinB,由正弦定理得,2cab.()18,18.即abcosC18,由(1)知,cosC,所以ab36.由余弦定理得,c2a2b22abcosC(ab)23ab.c24c2336,c236.c6.16(文)在ABC中,已知AB,BC2.(1)若cosB,求sinC的值;(2)求角C的取值范围解析(1)在ABC中,由余弦定理知,AC2AB2BC22ABBCcosB34229.所以AC3.又因为sinB,由正弦定理得.所以sinCsinB.(2)在ABC中,由余弦定理得,AB2AC2BC22ACBCcosC,3AC244ACcosC,即AC24cosCAC10.由题意知,关于AC的一元二次方程应该有解,令(4cosC)240,得cosC,或cosC(舍去,因为ABBC)所以,0C,即角C的取值范围是.点评1.本题也可用图示法,如图:A为B上不在直线BC上的任一点,由于rAB,故当CA与B相切时C最大为,故C.2高考命题大题的第一题一般比较容易入手,大多在三角函数的图象与性质、正余弦定理、平面向量等内容上命制,这一部分要狠抓基本原理、公式、基本方法的落实(理)(2010东北师大附中、辽宁省实验中学联考)设ABC的内角A、B、C所对的边分别为a、b、c,且acosCcb.(1)求角A的大小;(2)若a1,求ABC的周长l的取值范围解析(1)由acosCcb得sinAcosCsinCsinB又sinBsin(AC)sinAcosCcosAsinCsinCcosAsinC,sinC0,cosA,又0Aa1,labc(2,3,即ABC的周长l的取值范围为(2,317(文)ABC中内角A、B、C的对边分别为a、b、c,向量m(2sinB,),n(cos2B,2cos21)且mn.(1)求锐角B的大小;(2)如果b2,求ABC的面积SABC的最大值分析(1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决解析(1)mn,2sinBcos2Bsin2Bcos2B,即tan2B又B为锐角,2B(0,),2B,B.(2)B,b2,由余弦定理cosB得,a2c2ac40又a2c22ac,ac4(当且仅当ac2时等号成立)SABCacsinBac(当且仅当ac2时等号成立),点评本题将三角函数、向量与解三角形有机的结合在一起,题目新疑精巧,难度也不大,即符合在知识“交汇点”处构题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解(理)(2010山师大附中模考)在ABC中,角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年冶金工业技能鉴定高分题库含答案详解(培优A卷)
- 解析卷-公务员考试《常识》专题测试试题(含答案及解析)
- 重难点解析人教版9年级数学上册【旋转】综合测试试题(解析卷)
- 兴业银行临沂市兰山区2025秋招笔试英文行测高频题含答案
- 农发行随州市广水市2025秋招无领导小组面试案例库
- 农发行咸宁市通城县2025秋招笔试热点题型专练及答案
- 广发银行北京市昌平区2025秋招笔试专业知识题专练及答案
- 农发行云浮市郁南县2025秋招半结构化面试题库及参考答案
- 华夏银行北京市石景山区2025秋招结构化面试经典题及参考答案
- 2025年江苏商贸职业学院招聘工作人员笔试备考题库附答案详解
- 部编高教版2023·职业模块 中职语文 2.《宁夏闽宁镇:昔日干沙滩今日金沙滩》 课件
- 矿井火灾防治理论与技术课件
- 【MOOC】生命的教育-浙江大学 中国大学慕课MOOC答案
- 食品检测实验室操作规程
- 高血压个案护理案例
- 四川省三级综合医院评审标准实施细则(2023年版)
- 心肺复苏术课件2024新版
- Unit 1 Lesson1 Hello!教学设计 2024-2025学年冀教版英语七年级上册
- 2024年省食品生产监管能力大比武理论备赛试题库(含答案)
- 黑布林阅读初一5《大卫和超级神探》中文版
- 2025届高三化学一轮复习策略讲座
评论
0/150
提交评论