




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章 向量与解析几何向量代数定义定义与运算的几何表达在直角坐标系下的表示向量有大小、有方向. 记作或 模向量的模记作和差 单位向量,则与同向的单位向量为方向余弦设与轴的夹角分别为,则方向余弦分别为点乘(数量积), 为向量a与b的夹角叉乘(向量积) 为向量a与b的夹角向量与,都垂直且右手系定理与公式垂直平行交角余弦两向量夹角余弦投影向量在非零向量上的投影 平面直线法向量 点方向向量 点方程名称方程形式及特征方程名称方程形式及特征一般式一般式点法式点向式三点式参数式截距式两点式面面垂直线线垂直面面平行线线平行线面垂直线面平行点面距离 面面距离 面面夹角线线夹角线面夹角 空间曲线:切向量切“线”方程:法平“面”方程:切向量切“线”方程:法平“面”方程:空间曲面:法向量切平“面”方程:法“线“方程:第十章 重积分重积分积分类型计算方法典型例题二重积分平面薄片的质量质量=面密度面积(1) 利用直角坐标系X型 Y型 (2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 );(2) 被积函数用极坐标变量表示较简单( 含, 为实数 )计算步骤及注意事项1 画出积分区域2 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数 关于坐标变量易分离3 确定积分次序 原则:积分区域分块少,累次积分好算为妙4 确定积分限 方法:图示法 先积一条线,后扫积分域三重积分空间立体物的质量质量=密度面积(1) 利用直角坐标投影法:截面法:(2) 利用柱面坐标 相当于在投影法的基础上直角坐标转换成极坐标 适用范围:积分区域表面用柱面坐标表示时方程简单;如 旋转体被积函数用柱面坐标表示时变量易分离.如(3)利用球面坐标 适用范围:积分域表面用球面坐标表示时方程简单;如,球体,锥体.被积函数用球面坐标表示时变量易分离. 如,考试不作要求,考研重点掌握第十一章曲线积分与曲面积分曲线积分与曲面积分积分类型计算方法典型例题第一类曲线积分曲形构件的质量质量=线密度弧长参数法(转化为定积分)(1) (2) 平面第二类曲线积分变力沿曲线所做的功(1) 参数法(转化为定积分)三维情形:(2)利用格林公式(转化为二重积分)条件:L封闭,分段光滑,有向(左手法则围成平面区域D) P,Q具有一阶连续偏导数结论:应用:(3)利用路径无关定理(特殊路径法)等价条件: 与路径无关,与起点、终点有关具有原函数(特殊路径法,偏积分法,凑微分法) (4)两类曲线积分的联系第一类曲面积分曲面薄片的质量质量=面密度面积投影法: 投影到面类似的还有投影到面和面的公式第二类曲面积分流体流向曲面一侧的流量(1)投影法:,为的法向量与轴的夹角前侧取“+”,;后侧取“”,:,为的法向量与轴的夹角右侧取“+”,;左侧取“”,:,为的法向量与轴的夹角上侧取“+”, ;下侧取“”,(2)高斯公式 条件:封闭,分片光滑,是所围空间闭区域的外侧 P,Q,R具有一阶连续偏导数 结论: 应用:(3)两类曲面积分之间的联系转换投影法:所有类型的积分:定义:四步法分(任意分割)、匀(任意取点)、和(求和)、精(求极限);性质:对积分的范围具有可加性,具有线性性;第十二章 级数无穷级数常数项级数傅立叶级数幂级数一般项级数正项级数用收敛定义,存在常数项级数的基本性质常数项级数的基本性质 若级数收敛,各项同乘同一非零常数仍收敛. 两个收敛级数的和差仍收敛.注:一敛、一散之和必发散.去掉、加上或改变级数有限项, 不改变其收敛性. 若级数收敛, 则对这级数的项任意加括号后所成的级数仍收敛,且其和不变。 推论: 如果加括号后所成的级数发散, 则原来级数也发散. 注:收敛级数去括号后未必收敛.(必要条件) 如果级数收敛, 则莱布尼茨判别法若且,则收敛则级数收敛.和都是正项级数,且. 若收敛,则也收敛;若发散,则也发散.比较判别法比较判别法的极限形式和都是正项级数,且,则若,与同敛或同散;若,收敛,也收敛;如果,发散,也发散。比值判别法根值判别法是正项级数,,则时收敛;()时发散;时可能收敛也可能发散.收敛性和函数展成幂级数,缺项级数用比值审敛法求收敛半径的性质在收敛域上连续;在收敛域内可导,且可逐项求导;和函数在收敛域上可积分,且可逐项积分.(不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025电子厂劳务合同模板
- 2025届山东省高三下学期学业水平等级性模拟考试历史试题(原卷版+解析版)
- 公司研发员工劳动协议书
- 数字化平台服务推广合同
- 商业地产租赁与经营管理服务合同
- 浙江国企招聘2025台州市黄岩交通旅游投资集团有限公司下属子公司招聘10人笔试参考题库附带答案详解
- 2025重庆铜生人力资源服务股份有限公司招聘39人笔试参考题库附带答案详解
- 2025山东日照力诚人力资源有限公司招聘外包服务人员6人笔试参考题库附带答案详解
- 绿茶鉴定 测试题及答案
- 农业科技协同攻关实施方案升级
- 数学-湖北省武汉市2025届高中毕业生二月调研考试(武汉二调)试题和解析
- 人教版一年级下册数学第一单元《认识图形(二)》作业设计
- 职业教育教师数智素养指标体系构建
- 访问学者 申请书
- 2025年全球及中国依西美坦片行业头部企业市场占有率及排名调研报告
- 2025年杭州市萧山区国有企业招聘笔试参考题库含答案解析
- 某院护理人员对常用中医护理技术知信行现状研究【复制】
- 《西游记》讲解学习
- 2024年校园食品安全检测服务协议3篇
- 江苏省苏州市(2024年-2025年小学六年级语文)部编版小升初真题(下学期)试卷及答案
- 【MOOC】犯罪心理学-西南政法大学 中国大学慕课MOOC答案
评论
0/150
提交评论