《条件极值》PPT课件_第1页
《条件极值》PPT课件_第2页
《条件极值》PPT课件_第3页
《条件极值》PPT课件_第4页
《条件极值》PPT课件_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

条件极值,第四节条件极值及其求法,条件极值,极值问题,无条件极值:,条件极值:,条件极值的求法:,方法1代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,还有其它条件限制,例如,方法2拉格朗日乘数法.,如方法1所述,则问题等价于一元函数,可确定隐函数,的极值问题,极值点必满足,设,记,例如,故,故有,引入辅助函数,辅助函数F称为拉格朗日(Lagrange)函数.,利用拉格,极值点必满足,则极值点满足:,朗日函数求极值的方法称为拉格朗日乘数法.,推广,拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.,设,解方程组,可得到条件极值的可疑点.,例如,求函数,下的极值.,在条件,例5.,要设计一个容量为,则问题为求x,y,令,解方程组,解:设x,y,z分别表示长、宽、高,下水箱表面积,最小.,z使在条件,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱,试问,得唯一驻点,由题意可知合理的设计是存在的,长、宽为高的2倍时,所用材料最省.,因此,当高为,思考:,1)当水箱封闭时,长、宽、高的尺寸如何?,提示:利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时,欲使造价,最省,应如何设拉格朗日函数?长、宽、高尺寸如何?,提示:,长、宽、高尺寸相等.,内容小结,1.函数的极值问题,第一步利用必要条件在定义域内找驻点.,即解方程组,第二步利用充分条件判别驻点是否为极值点.,2.函数的条件极值问题,(1)简单问题用代入法,如对二元函数,(2)一般问题用拉格朗日乘数法,设拉格朗日函数,如求二元函数,下的极值,解方程组,第二步判别,比较驻点及边界点上函数值的大小,根据问题的实际意义确定最值,第一步

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论