《曲面方程的概念》PPT课件_第1页
《曲面方程的概念》PPT课件_第2页
《曲面方程的概念》PPT课件_第3页
《曲面方程的概念》PPT课件_第4页
《曲面方程的概念》PPT课件_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、曲面方程的概念,二、常见的二次曲面及其方程,三、空间曲线的方程,四、空间曲线在坐标面上的投影,第六节二次曲面与空间曲线,第八章向量代数空间解析几何,若曲面上的点的坐标都满足方程F(x,y,z)=0,(或z=f(x,y),,而不在曲面上的点的坐标都不满足方程F(x,y,z)=0,(或z=f(x,y),,则称方程F(x,y,z)=0,(或z=f(x,y),为曲面的方程.,而曲面就称为方程F(x,y,z)=0(或z=f(x,y)的图形.,一、曲面方程的概念,1.球面方程,球心在M0(x0,y0,z0),,半径为R的球面方程,半径为R的球面方程为,球心在原点时,,二、常见的二次曲面及其方程,半径为1的球面.,例1,表示怎样的曲面?,解,原方程两边同时除以2,,并将常数项移到等式右端,,得,配方得,所以,原方程表示球心在,定曲线C称为柱面的准线.,2.母线平行于坐标轴的柱面方程,动直线L沿给定曲线C平行移动形成的曲面,,称为柱面,,动直线L称为柱面的母线,,L,C,柱面的形成,由于方程f(x,y)=0不含z,,所以点M(x,y,z)也满足方程f(x,y)=0.,设M(x,y,z)为柱面上的任一点,,过M作平行于z轴的直线交xy坐标面于点,由柱面定义可知,必在准线C上.,所以的坐标满足曲线C的方程f(x,y)=0.,而不在柱面上的点作平行于z轴的直线,与xy坐标面的交点必不在曲线C上,,也就是说不在柱面上的点的坐标不满足方程f(x,y)=0.,所以,不含变量z的方程,x,y,z,O,M,L,C,现在来建立以xy坐标面上的曲线C:f(x,y)=0为准线,,平行于z轴的直线L为母线,的柱面方程.,f(x,y)=0,在空间表示以xy坐标面上的曲线为准线,,平行于z轴的直线为母线的柱面.,类似地,不含变量x的方程,f(y,z)=0,平行于x轴的直线为母线的柱面.,在空间表示以yz坐标面上的曲线为准线,,而不含变量y的方程,f(x,z)=0,在空间表示以xz坐标面上的曲线为准线,,平行于y轴的直线为母线的柱面.,例如方程在空间表示以xy坐标面上的圆为准线、,平行于z轴的直线为母线的柱面.,称为圆柱面,x,y,z,O,方程y=x2在空间表示以xy坐标面上的抛物线为准线、,平行于z轴的直线为母线的柱面.,称为抛物柱面.,x,y,z,O,平行于y轴的直线为母线的柱面,方程在空间表示以xz坐标面上的椭圆为准线,,称为椭圆柱面.,x,y,z,O,2,绕z轴旋转所成的旋转曲面的方程.,现在来建立yz面上曲线C:f(y,z)=0,设M(x,y,z)为旋转曲面上任意一点,,过点M作平面垂直于z轴,,交z轴于点P(0,0,z),,交曲线C于点M0(0,y0,z0).,由于点M可以由点M0绕z轴旋转得到,,因此有,3.以坐标轴为旋转轴的旋转曲面的方程,平面曲线C绕同一平面上定直线L旋转所形成的曲面,,称为旋转曲面,,定直线L称为旋转轴.,x,y,z,O,M,M0,P,C,f(y0,z0)=0,所以,又因为M0在曲线C上,,将、代入f(y0,z0)=0,,即得旋转曲面方程:,同理,曲线C绕y轴旋转成的曲面方程为,所以,旋转曲面的形成,例2,将下列平面曲线绕指定坐标轴旋转,试求所得旋转曲面方程:,(1)yz坐标面上的直线z=ay(a0),,绕z轴.,(2)yz坐标面上的抛物线z=ay2(a0),,绕z轴.,(3)xy坐标面上的椭圆,分别绕x、y轴.,解,(1)yz坐标面上的直线z=ay(a0)绕z轴旋转,,故z保持不变,将y换成,则得,即所求旋转曲面方程为,表示的曲面称为圆锥面,,点O称为圆锥的顶点.,(2)yz坐标面上的抛物线z=ay2绕z轴旋转所得的曲面方程为,该曲面称为旋转抛物面.其特征是:,当a0时,旋转抛物面的开口向下.,一般地,,所表示的曲面称为椭圆抛物面。,方程,x,y,z,O,(3)xy坐标面上的椭圆绕x轴旋转,,故x保持不变,,而将y换成,得旋转曲面的方程为,该曲面称为旋转椭球面.,类似地,该椭圆绕y轴旋转而得的旋转椭球面的方程为,一般地,方程,所表示的曲面称为椭球面.,其特征是:,用坐标面或平行于坐标面的平面x=m,,y=n,,z=h(ama,,bnb,chc),截曲面所得到的交线均为椭圆.,当a,b,c中有a=b,或b=c,或a=c时,,即为旋转椭球面,,当a=b=c时,即为球面.,x,y,z,O,1.空间曲线的一般方程,称为空间曲线的一般方程,例3,下列方程组表示什么曲线?,三、空间曲线的方程,z=3是平行于xy坐标面的平面,,因而它们的交线是在平面z=3上的圆.,(1)因为x2+y2+z2=25是球心在原点,半径为5的球面,,解,x,y,z,O,因而它们的交线是在xy坐标面上的圆,z=0是xy坐标面,,(2)因为第一个方程所表示的球面与(1)相同,,若把(2)写成同解方程组,它表示母线平行于z轴的圆柱面与xy坐标面的交线.,这样更清楚地看出它是xy坐标面上的圆,x,y,O,t为参数.,2.空间曲线的参数方程,空间曲线上动点M的坐标x,y,z,也可以用另一个变量t的函数来表示,,即,形如上的方程组称为曲线的参数方程,,则从P0到P所转过的角=t,,质点在P0(R,0,0)处,,向平行于z轴的方向上升.,例4,设质点在圆柱面上以均匀的角速度,绕z轴旋转,,同时又以均匀的线速度v,运动开始,即t=0时,,求质点的运动方程.,解,设时间t时,,质点的位置为P(x,y,z),,由P作xy坐标面的垂线,垂足为Q(x,y,0),上升的高度QP=vt,,即质点的运动方程为:,此方程称为螺旋线方程.,P0,Q,P,O,设为已知空间曲线,,则以为准线,,平行于z轴的直线为母线的柱面,,称为空间曲线关于xy坐标面的投影柱面.,而投影柱面与xy坐标面的交线C,称为曲线在xy坐标面的投影曲线.,类似地,,可以定义曲线关于yz坐标面、zx坐标面的投影柱面及投影曲线.,设空间曲线的方程为,消去z,得,G(x,y)=0.,四、空间曲线在坐标面上的投影,就可得到关于yz坐标面,或者zx坐标面的投影柱面方程,,可知满足曲线的方程一定满足方程G(x,y)=0,,而G(x,y)=0是母线平行于z轴的柱面方程,,因此,柱面G(x,y)=0,就是曲线关于xy坐标面的投影柱面.,而,就是曲面在xy坐标面上的投影曲线的方程.,同理,从曲线的方程中消去x或者y,,从而也可得到在相应的投影曲线的方程.,得x2+y23x5y=0,,在xy坐标面上的投影曲线的方程.,例5,求曲线,解,从曲线的方程中消去z,,即,它是曲线关于xy坐标面的投影柱面圆柱面的方程,,在xy坐标面上投影

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论