三维数字化扫描及测量技术在下颌前突畸形诊治中的应用模板_第1页
三维数字化扫描及测量技术在下颌前突畸形诊治中的应用模板_第2页
三维数字化扫描及测量技术在下颌前突畸形诊治中的应用模板_第3页
三维数字化扫描及测量技术在下颌前突畸形诊治中的应用模板_第4页
三维数字化扫描及测量技术在下颌前突畸形诊治中的应用模板_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

www.CRTER.org丁榆德,等. 三维数字化扫描及测量技术在下颌前突畸形诊治中的应用三维数字化扫描及测量技术在下颌前突畸形诊治中的应用丁榆德,杨 斌(中国医学科学院整形外科医院颌面整形外科中心,数字化模拟中心,北京市 )引用本文:丁榆德,杨斌. 三维数字化扫描及测量技术在下颌前突畸形诊治中的应用J.中国组织工程研究,2016,20(20):2992-2999.DOI: 10.3969/j.issn.2095-4344.2016.20.015 ORCID: 0000-0002-6535-4710(丁榆德)文章快速阅读:三维扫描技术在下颌前突畸形诊治中的应用(1)三维扫描技术在对下颌前突等牙颌面畸形的诊断和治疗方面已得到了广泛应用,其具有简易、精确、无放射的优点,能够直接捕捉实体组织的表层图像,并以三维立体结构呈现出来。丁榆德,男,1989年生,浙江省温州市人,回族,北京协和医学院在读硕士,主要从事整形外科、颌面外科正颌方向研究。通讯作者:杨斌,博士,教授,中国医学科学院整形外科医院颌面整形外科中心,数字化模拟中心,北京市 中图分类号:R318文献标识码:A文章编号:2095-4344(2016)20-02992-08稿件接受:2016-03-11http:/WWW.(3)随着研究的深入,三维扫描技术会越来越成熟,并在整复外科领域得到广泛的推广与应用,从而创造更多的临床价值。(2)与CT相比,三维扫描技术无法显示扫描物的内部结构,无法分离软硬组织层次,因而在临床使用时需根据数据需求,合理选用。+文题释义:三维扫描技术:是一种显示物体表面的三维形态的立体测量技术,能够采集提取物体表面的三维几何形状,通过软件进行建模,从而得到具有物体表面三维数据的数字化三维模型。下颌前突:是下颌骨过度向前向下生长,从而引起咬合关系错乱并致面下部错牙合畸形的一种牙颌面畸形。临床上常表现为面下1/3向前向下突出,下唇及颏部位置靠前,后牙呈安氏类错牙合,前牙呈反牙合或对刃牙合。摘要背景:下颌前突畸形经典的正颌外科修复方案包括术前的头影测量,取模,面弓转移,模型外科,制做牙合板等过程,其流程繁琐复杂且往往容易存在偏差,修复后的难以预估更是一直困扰医生与患者沟通时的一大难题。目的:对近年来数字化三维扫描技术在下颌前突畸形临床诊治中的应用现状进行综述,阐述其原理、应用及优缺点,为临床使用提供参考。方法:于2015年9月以“三维扫描,骨性类,正颌,下颌前突”为中文关键词,以“three-dimensional scanning,class,orthognathic,mandibular prognathism”为英文关键词,采用计算机检索万方医学网和PubMed数据库,筛选有关三维扫描技术在下颌前突畸形诊治中的应用文章48篇进行分析。结果与结论:三维扫描技术在对下颌前突畸形患者修复前的诊治具有较传统测量技术所不具备的高精确度、耗时短的特点,并能直接实时采集捕捉物体的三维几何形状,进行体表器官解剖形态建模,采集、测量体表生物信息数据,为修复后的评估以及随访提供了可靠的监测方法。与CT相比,三维扫描技术无法显示扫描物的内部结构,无法分离软硬组织层次,因而在临床使用中需根据数据需求合理选用。关键词:组织构建;组织工程;三维扫描;骨性类;正颌;下颌前突主题词:成像,三维;颌;错|HE|,安氏类 基金资助:北京市科技计划首都临床特色应用研究项目(Z5056)3 P.O.Box 1200,Shenyang Application of three-dimensional scanning and measuring techniques in the diagnosis and treatment of mandibular prognathismDing Yu-de, Yang Bin (Maxillofacial Plastic Surgery Center, Digital Simulation Center, Plastic Surgery Hospital (Institute), China Academy of Medical Sciences & Peking Union Medical College, Beijing , China)AbstractBACKGROUND: A classical orthognathic scheme for mandibular prognathism includes preoperative cephalometric analysis, acquiring modulus, facebow transfer, model surgery, making occlusion plate. This process is cumbersome, complex, and prone to have bias. Moreover, orthognathic effects are difficult to be predicted, which is a major difficulty in doctor-patient communication.OBJECTIVE: To summarize and analyze the use of three-dimensional scanning techniques in the treatment and diagnosis of mandibular prognathism, including principle, application and relative merits, thus providing reference for applying to the clinic.METHODS: Papers addressing the use of three-dimensional scanning techniques in the diagnosis and treatment of mandibular prognathism were retrieved by computer in Wanfang and PubMed databases with the key words of “three-dimensional scanning, class III, orthognathic, mandibular prognathism” in Chinese and English, respectively. A total of 48 papers were included for review.RESULTS AND CONCLUSION: Compared with the traditional technology, the three-dimensional scanning technology has high accuracy and efficiency in the diagnosis and treatment of mandibular prognathism, and can directly capture the 3D geometry of objects for modeling, collection and measurement of biological data, which provides a reliable monitoring method for postoperative assessment and follow-up. Compared with the CT, the three-dimensional scanning technology cannot show the internal structure and separate hard and soft tissues, which should be reasonably chosen according to practical data.Subject heading: Imaging, Three-Dimensional; Jaw; Malocclusion, Angle Class IIIFunding: the Science and Technology Plan for Capital Clinical Featured Application in Beijing, No. Z056Cite this article: Ding YD, Yang B. Application of three-dimensional scanning and measuring techniques in the diagnosis and treatment of mandibular prognathism. Zhongguo Zuzhi Gongcheng Yanjiu. 2016;20(20):2992-2999.2993ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH0 引言 Introduction Ding Yu-de, Studying for masters degree, Maxillofacial Plastic Surgery Center, Digital Simulation Center, Plastic Surgery Hospital (Institute), China Academy of Medical Sciences & Peking Union Medical College, Beijing , ChinaCorresponding author: Yang Bin, M.D., Professor, Maxillofacial Plastic Surgery Center, Digital Simulation Center, Plastic Surgery Hospital (Institute), China Academy of Medical Sciences & Peking Union Medical College, Beijing , China下颌前突畸形是一种常见的由错牙合畸形导致的牙以及颌骨在三维空间上表现不协调的牙颌面畸形,在人群中具有较高的发病率。临床上常以X射线头影测量指标以及牙颌模型的分析来诊断1-2。而其治疗经典的正颌外科治疗方案包括:术前的头影测量,取模,面弓转移,模型外科,制做牙合板等过程,其流程繁琐复杂且往往容易存在偏差3-4,术后的难以预估更是一直困扰医生与患者沟通时的一大难题3。近年来,随着数字化技术与医学相结合的快速发展,对于下颌前突畸形手术中牙合板的精确制作、手术模拟和术后的手术评估及长期随访等方面均有精准的技术方法5。数字化正颌外科是结合了医学、数学、信息学、机械工程等多门学科的一门综合学科,其包括头颅建模的术前规划及模拟、计算机辅助设计、三维打印及测量评估等方面,能够极大地改进正颌外科手术的实际操作流程及准确性6。三维扫描技术与CT三维重建技术是数字化外科数据采集的两大主要方法。鉴于目前CT仪器及技术的普及,医疗行业普遍采用三维CT采集重建数据,而对扫描技术缺乏必要认识。较CT而言,三维扫描技术具有简易、精确、无放射的独特优势,但也存在其局限性。文章以下颌前突畸形为例,就近年来数字化三维扫描技术在其临床诊治中的应用现状进行综述,系统阐述其原理、应用及优缺点,并对其应用前景进行展望。1 资料和方法 Data and methods1.1 资料来源 第一作者检索1970年1月至2015年9月万方医学网数据库和PubMed数据库相关文献。中文检索词为“三维扫描,骨性类,正颌,下颌前突”;英文检索词为“three-dimensional scanning,class 2999ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH共检索到中英文文献500余篇通过阅读摘要初步筛选,共选取48篇文献进行综述,其中中文7篇,英文41篇纳入有关三维扫描技术在下颌前突畸形诊治中的应用排除研究目的与本文无关及重复文献12篇文献探讨了三维扫描技术对下颌前突畸形患者的术前诊断及治疗辅助作用3篇文献对现有的三维扫描技术的构成分类进行了综述2篇文献探讨了传统正颌外科的手术及数字化技术的改进24篇文献探讨了三维激光扫描技术对正颌患者术后软组织的评估7篇文献探讨了三维扫描技术对正颌手术模型外科的模拟设计的数字化改进作用第一作者以“三维扫描,骨性类,正颌,下颌前突”,英文“three-dimensional scanning,class,orthognathic,mandibular prognathism”检索万方数据库、Pubmed数据库1970至2015年相关文献图1 文献检索流程图,orthognathic,mandibular prognathism”。1.2 纳入与排除标准纳入标准:三维扫描技术在下颌前突畸形术前诊断中的运用研究。有关三维扫描技术对正颌手术的手术模拟设计的应用研究。三维扫描技术对下颌前突畸形术后软组织评估的现状及研究。具有原创性,论点论据可靠文献。对同一领域结果选择较近期发表或权威杂志的文献。排除标准:较旧理论与重复研究。1.3 质量评估 共检索到相关文献500余篇,阅读标题与摘要进行初步筛选,排除与本文相关性不大的文献及重复研究。查阅全文,判断符合纳入标准的文章,共选取48篇文献进行综述。48篇文献中的24篇文献探讨了三维激光扫描技术对正颌患者术后软组织的评估,2篇探讨了传统正颌外科的手术及数字化技术的改进,3篇是对现有的三维扫描技术的构成分类进行了综述,12篇探讨了三维扫描技术对下颌前突畸形患者的术前诊断及治疗辅助作用,7篇探讨了三维扫描技术对正颌手术模型外科的模拟设计的数字化改进作用。文献检索流程图见图1。2 结果 Results 三维扫描技术,是一种显示体表三维形态的立体测量技术,作为能够提取物体的三维几何形状,进行体表器官解剖形态建模,采集、测量体表生物信息数据的新兴辅助技术,而被逐渐运用到下颌前突畸形的诊断、手术设计以及术后的随访评估中来7。现阶段,国内外主流的数字化扫描测量技术主要包括如下:接触式扫描测量。非接触式扫描测量。现就其分类、原理、在下颌前突畸形中的运用简要阐述如下。2.1 接触式扫描测量 接触式机械化测量:即通过测量头,直接与物体表面相接触,从而记录测量头所在测量点的坐标位置,再根据各测量点的三维坐标,利用计算机的重建功能,将所测物体的三维形态重建起来8。Nakashima等9研究了接触式测量装置在口腔牙科领域的测量,将测量头与石膏表面直接接触,记录测量点位置的三维坐标,通过计算机自动测量,记录,从而重建出记录口腔牙齿形态的石膏模型,将牙颌模型转存为数字信息,测量其各解剖标志点的数据,并与口腔内的真实数据相比较,评估其数值的准确性,认为接触式的机械化测量在牙科领域运用有一定的临床价值。但是,接触式的测量难以对模型上的皱襞曲面以及较细小的窝沟点隙等盲区进行扫描,而逐点的测量也大大增加了扫描时间,难以在口腔内进行实测。同时,测量力度以及测量头的直径都会对测量的精确性有所影响,且易导致物体表面变形或划伤,影响测量精度。测量软组织时,接触变形的问题图2 3dMD图像设备25更是接触式测量的一大限制,被认为不适于软组织的扫描重建。2.2 非接触式扫描测量2.2.1 CT扫描重建 CT重建即通过X射线对人体的各部位进行扫描,经探测接收器接收后,通过光点转换器转换及计算机处理后获得图像,再经过计算机模拟软件,通过设定不同阈值,对骨组织或软组织不同层面的图像叠加,进行结构提取,从而获得颅颌面的骨组织、牙齿结构或颜面部的软组织的三维重建模型10。虽然,CT扫描能同时获得硬组织与软组织的全部信息,但由于放射剂量对人体的伤害,扫描层之间的层距以及层厚对数据精确度的影响,以及颌面部或者口腔内的金属可能产生的伪影等问题,限制了其在口腔颌面实测的运用以及对患者术后长期多次的随访观察。2.2.2 莫尔云纹测量 莫尔云纹测量是光学测试技术中的一种,由光栅、光源、摄影机等组成,其原理是将平行光透过两有差异的基准光栅后投照于物体表面,光栅在物体表面产生形变,而表面的各点高度与位置信息就由基准栅与变形栅叠合产生的云纹所包含,经过计算分析云纹,得到各点的三维坐标,从而重建物体表面的三维形态。高崎和Meadous等11在1970年开始提出,之后迅速运用于口腔、解剖等领域。Chen等12在1995年就运用莫尔云纹测量对25例下颌前突畸形患者的面部软组织进行了评估。但是,莫尔云纹测量只能获得物体表面一部分的三维坐标,不能重建出整个表面的三维信息,主要是用于相对较平缓的软组织的重建测量,以及无牙牙合的扫描,对于具有尖锐外形的物体则成像不佳,对形态复杂的表面更是难以达到精确13。2.2.3 三维激光扫描技术 三维激光扫描技术是目前在口腔领域运用较多的一种三维扫描技术。其很早便被运用于术前术后的软组织变化评估中,从而分析正颌手术的术后组织复发率问题14。Moss等15在1989年对其装置进行了详细的描述,它其实和三维光学扫描技术一样,同属于结构光三维视觉测量技术。根据激光的三角形测距原理,通过发出的激光束经过反光镜发射到物体表面,形成反光点,在通过CCD(即电荷耦合器件)接受反光点,经过多次的扫描从而计算获得一系列的点云数据,得到被测物体的表面三维坐标16。三维激光扫描操作简单,耗费低,清晰精确,现已被广泛运用于临床中。但是,由于目前的激光扫描多采用线结构模式,在组织存在倒凹时,往往容易产生扫描盲区,而且扫描速度较立体摄影相对较慢,在扫描期间,患者特别是年龄较小的患儿,其微笑、吞咽等细微动作所导致肌肉的收缩变化,眼球运动,鼻呼吸和头部姿势变化都会对数据的精确性产生一定的影响,因而常需在自然状态下获取三维数据17。Peluso等18报道三维激光扫描技术的测量精度在0.1 mm左右,但较三维光学扫描低。此外,由于激光扫描对于眼睛的伤害,扫描时患者需要保持闭眼动作19,眼部周围的组织精确度较睁眼状态下相对降低。2.2.4 立体摄影测量 其原理与三维激光扫描一样,依赖于三角形测距原理成像。通过两个摄像头对被测物体的拍摄,计算出被测物体相对于两个摄像头之间的距离以及两摄像头的焦距间的关系,从而获得物体表面的三维坐标信息13,20。1944年,Thalmann- Degan开始运用立体摄影技术比较正畸前后患者面部的差异21;Hajeer13与Balvinder等20在2002年开始运用立体摄影技术,对正颌术后的患者组织进行扫描评估。通过立体测图仪与现代化计算机技术的结合,立体摄影测量可以获得相对较高的测量精度,而且操作时间短,即使是年龄较小的患儿也能采集较准确的数据。但由于立体摄影设备的价格昂贵,拍摄时对环境的较高要求,在临床使用时还未得到广泛的应用普及。2.2.5 三维光学扫描技术 其本质也是结构光三维视觉测量技术的一种,在光学三角测量原理的基础上,运用光学投影系统作为投射器,投影产生的平行条纹在被测物体上发生形变,经过计算机的相位计算分析,计算出物体表面的形状,即光栅投影测量22。由于光栅投影可以产生高密度的条纹覆盖物体表面,因而获得的物体表面点的三维坐标信息密度也相对较高,从而可以得到较高的测量精度。三维光学扫描技术,相较激光扫描技术,其投射能源为可见光,对患者影响小,可形成多个视角的扫描,避免了扫描盲区的产生,扫描时间短(0.2-0.8 s),对被测患者的位置要求相对较低,降低了操作的难度23,获得的表面纹理信息,更为逼真得显示出物体的表面信息24。2.2.6 3dMD 3dMD是将立体摄影技术与结构光扫描技术相结合的一种三维扫描技术系统,该系统使用多个摄像头(两边各3个,分别包括一个颜色以及两个红外线摄像头)来获取实景照片,即将一组随机光投射于被测物体上,同时多个可捕获精确图像的摄像机自动调整最佳参数从多个角度同步获取信息(见图2)。其图像获取速度最快可达1.5 ms,即使是对年龄较小的患儿,也能较精准的采集信息25。3dMD由于其准确度高、误差小、精度大等特点,获得了较高的认可,但也有文献报道其对于面部较突出以及过于平滑的区域,如鼻尖区域以及未行治疗的唇裂边缘,常无法获取较精细的三维数据26。2.3 三维扫描技术在下颌前突畸形的诊治辅助应用中主要包括以下3方面 术前诊断、手术设计与术后评估。2.3.1 辅助术前诊断 下颌前突畸形的传统诊断治疗,其术前诊断主要包括头影测量、临床检查以及口腔内牙颌石膏模型的制取1-2。而随着数字化技术在下颌前突畸形中的逐步运用,传统的测量方法,因其具有图像失真、标志点模糊等缺点,而逐渐被三维CT的数据测量所取代27,但CT所获得的软组织数据往往因层距的原因,其精准度相对不高,而三维激光扫描、三维光学扫描以及3dMD等在近年的广泛运用,逐渐在软组织扫描重建领域受到越来越多的重视。随着计算机技术的发展,经过国内外的学者大量临床运用三维激光扫描技术以及三维光学扫描技术,对正颌患者扫描后进行统计分析研究,现已成为被人们所认可的可靠测量方法。因而,在对患者的术前面部进行扫描,重建软组织三维模型的领域,三维激光扫描及光学扫描技术发挥出越来越大的作用,在辅助诊断下颌前突畸形中得到广泛运用5,18。2.3.2 辅助手术设计 在下颌前突畸形的手术设计方面,三维激光扫描所获得的牙颌模型数据与CT重建所获得的颌骨数据相拟合,更是极大的简化了传统手术的模型外科设计以及术中咬合导板的制作步骤6。牙颌模型因其真实的记录上下颌牙、牙弓形态等解剖结构以及上下牙的咬合关系,对于下颌前突畸形的诊断及治疗具有重要的意义。而在传统的正颌外科手术前,模型外科的设计操作更是决定手术术后效果的重要因素。通过三维激光扫描技术对牙颌模型扫描而获取的三维结构,具有精度高的特点28-29,其准确性可高达1.9-0.8 mm30-31。数字化的牙颌模型在与CT数据拟合后,可以获得一个相对精确的牙颌头颅模型,通过计算机软件在模型上模拟正颌手术,确定一个手术最终的颌骨及牙牙合的位置关系数据以及术后的预估效果32-34,从而获得一个最终的手术方案,可以显著提高手术设计的精准度35-37。同时,三维扫描技术对手术设计的辅助,对颅颌面手术的可视化以及提高效率方面,有极大的帮助10,在与患者交流沟通手术方案方面也有十足的优越性。 近年来,不少学者运用对牙牙合面成像更精细的CBCT(Cone beam computed tomography)数据,来重建患者的模型,模拟正颌手术过程,简化了牙颌模型数据与螺旋CT数据拟合的过程38。但该方法对于口腔内存在烤瓷冠、种植体等金属体的患者,CBCT受金属伪影影响,往往牙齿形态成像不佳,对患者对象的限制性较大,而三维扫描技术重建牙牙合面形态就显现出其优势性来。2.3.3 辅助术后疗效评估及随访监测 下颌前突畸形矫治后的术后评估,主要包括硬组织及软组织的术前术后对比,对于颌骨和牙齿的术后以及正畸后的改变,现今已有许多的评估系统,测量方法也从一开始的硫酸纸描迹,到计算机软件定点,以及现在的三维头影测量,精确度得到了明显的提高。 但是,关于软组织的手术评估方面,直到三维扫描技术的逐步开展,才取得了实质性的进展。数字化三维扫描技术能够快速、准确地获取实体组织的表层图像,并以三维立体结构呈现。在对下颌前突畸形的临床患者进行头面部扫描获得的数据,能协助进行人体软组织测量,是真正意义上的软组织重建。通过三维扫描技术,可以实现对下颌前突畸形患者术前、术后以及长期随访过程中的无创检查,精准、有效的评估面部软组织的形态变化。自1970年起,双颌手术逐渐被运用于治疗严重的下颌前突畸形当中39,但鼻翼的变宽、上唇的扁平化一直是其术后的并发症之一40-41。因而上唇以及鼻的术后改变评估也一直为各学者所重视,但却一直缺乏一个三维上的数据比较,直到三维激光扫描技术及三维光学扫描技术逐渐被运用到医学上,鼻与上唇的术后改建才有了更为直观、精确的比较分析42-43。Yamada等44通过三维激光扫描对12例行双颌手术的患者术前术后的软组织进行扫描,从而对软组织各标志点进行线性分析、角度比较以及图像叠加后的视觉定性分析,从三维上评估得出,发现患者鼻翼在上颌骨术后呈变宽的趋势,但上唇未出现明显扁平化的现象。Alves等5通过将术前术后的额部做为校准13,比较得出正颌术后软组织的变化是从中线向鼻翼两旁逐渐减小,颏部变化趋势是从颏前点向两侧呈半球形逐渐减小。Suh等45对69例骨性类错牙合畸形患者术前术后软组织进行扫描分析,发现其水平向位移变化不明显。彭菊香等46运用结构光三维扫描技术,对8例骨性类错牙合畸形患者正畸正颌联合治疗的术前术后软组织进行扫描,认为骨性类错牙合畸形术后变化方向主要集中于垂直向与前后向,角度等变化主要发生在唇部,颏部体积变化最为显著,其次是上颌。同时,通过术前术后的软组织对比,三维扫描技术还能对术后的软组织复发率进行定量的计算5,通过术后不同时期的软组织对比,还能得出组织的术后肿胀的减小率,可以为术前的软组织预估提供数据支持。Kau等47对12例患者进行术后软组织扫描后进行分析,发现患者在术后1个月的组织肿胀消减率最大,约为60%,而双颌手术相较单颌手术的术后的体积变化更为明显。Verz等48在Tucker等4研究的基础上,在对骨性类畸形患者,运用三维扫描技术评估正颌术后的随访中,发现面部的软组织在微笑、扮鬼脸等动态的面部位移率长期随访结果未见统计学意义。3 小结 Conclusion 三维扫描技术在软组织重建领域的大力开展,为下颌前突畸形患者的术前诊断、手术设计以及术后软组织变化评估提供了更多的便利,操作人员甚至不需要太长的临床经验35,并能在任意的角度的进行观察,对数据测量进行评估16,显著提高了临床操作的便利性。 作者贡献:综述设计:由第一作者设计,通讯作者给予指导;资料收集:由第一作者完成资料收集,由第一作者完成外文文献翻译;文章撰写:由第一作者对所有资料进行总结并完成撰写;审校:综述完成后,由通讯作者进行审校。利益冲突:所有作者共同认可文章无相关利益冲突。伦理问题:没有与相关伦理道德冲突的内容。文章查重:文章出版前已经过CNKI反剽窃文献检测系统进行3次查重。文章外审:文章经国内小同行外审专家双盲外审,符合本刊发稿宗旨作者声明:第一作者对研究和撰写的论文中出现的不端行为承担责任。论文中涉及的原始图片、数据(包括计算机数据库)记录及样本已按照有关规定保存、分享和销毁,可接受核查。文章版权:文章出版前杂志已与全体作者授权人签署了版权相关协议。4 参考文献 References 1 胡静.下颌发育过度外科矫治术式的选择J.口腔颌面外科杂志, 2010年20(6): 381-383.2 邱蔚六.口腔颌面外科学M.上海:上海科学技术出版社, 2008.3 Kapila S,Conley RS,Harrell WE.The current status of cone beam computed tomography imaging in orthodontics. Dento Maxillo Facial Radiology. 2011; 40(1):24-34.4 Tucker S, Cevidanes LH, Styner M, et al.Comparison of actual surgical outcomes and 3-dimensional surgical simulations. J Oral Maxillofac Surg.2010;68(10): 2412-2421.5 Alves PV,Zhao L,Patel PK,et al.Three-Dimensional Facial Surface Analysis of Patients With Skeletal Malocclusion. J Craniofac Surg. 2009;20(2): 290-296.6 沈国芳.数字化技术与正颌外科J.中国实用口腔科杂志, 2014,7(6):324-328.7 Honrado CP, Larrabee WF Jr.Update in three-dimensional imaging in facial plastic surgery. Curr Opin Otolaryngol Head Neck Surg. 2004 Aug;12(4):327-331.8 韩强.应用于口腔医学领域的三维测量技术J.口腔材料器械杂志, 2003,12(1): 39-41.9 Nakashima T.A study on application of multiple jointed contact-type measuring apparatus for dental use. Kokubyo Gakkai Zasshi. 2000;67(2):155-162.10 Xia J,Samman N,Yeung RW,et al.Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery. Int J Adult Orthodon Orthognath Surg. 2000;15(4):265-282.11 Meadows DM,Johnson WO,Allen JB.Generation of surface contours by moire patterns. Appl Opt.1970;9(4): 942-947.12 Chen LH,Iizuka T.Evaluation and prediction of the facial appearance after surgical correction of mandibular hyperplasia. Int J Oral Maxillofac Surg. 1995;24(5):322-326.13 Hajeer MY,Ayoub AF,Millett DT, et al.Three- dimensional imaging in orthognathic surgery: the clinical application of a new method. Int J Adult Orthodon Orthognath Surg.2002;17(4):318-330.14 Moss JP,Mccance AM,Fright WR,et al.A three-dimensional soft tissue analysis of fifteen patients with Class II, Division 1 malocclusions after bimaxillary surgery. Am J Orthod Dentofacial Orthop.1994;105(5):430-437.15 Moss JP,Grindrod SR,Linney AD,et al.A computer system for the interactive planning and prediction of maxillofacial surgery. Am J Orthod Dentofacial Orthop. 1988;94(6):469-475.16 Halazonetis DJ.Acquisition of 3-dimensional shapes from images.Am J Orthod Dentofacial Orthop.2001; 119(5):556-560.17 Kau CH,Zhurov AI,Bibb R,et al.The investigation of the changing facial appearance of identical twins employing a three-dimensional imaging system. Orthod Craniofac Res. 2005;8(2):85-9018 Peluso MJ, Josell SD, Levine SW,et al.Digital models: An introduction.Semin Orthod.2004;10:226-238.19 Baik HS, Kim SY.Facial soft-tissue changes in skeletal Class III orthognathic surgery patients analyzed with 3-dimensional laser scanning.Am J Orthod Dentofacial Orthop.2010;138(2):167-178.20 Balvinder K,Jean-Christophe N,Janet B,et al.3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery.A pilot study. Int J Adult Orthodon Orthognath Surg. 2002;17(4):331-341.21 Burke PH, Beard FH.Stereophotogrammetry of the face: A preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod. 1967;53(10):769-782.22 Caspi D,Kiryati N,Shamir J.Range imaging with adaptive color structured lightJ.IEEE Transactions on Pattern Analysis and Machine Intelligence.1998;20(5):470 - 480.23 胡江,高勃,韩彦峰,等.3DSS-彩色结构光扫描系统测量重建基牙预备体的可靠性和准确性研究J.实用口腔医学杂志,2007,23(3):373-376.24 周海波,任秋实,李万荣.主动式光学三维成像技术J.激光与光电子学进展,2004,41 (10):2-5.25 How KC,Stephen R,Angela I,et al.Three-dimensional surface acquisition systems for the study of facial morphology and their application to maxillofacial surgery. Int J Med Robot. 2007 Jun;3(2):97-110.26 Heinz-Theo L,Laurent M,Astrid K,et al.Precision and Accuracy of the 3dMD Photogrammetric System in Craniomaxillofacial Application. J Craniofac Surg. 2010;21(3):763-767.27 Hassan B, van der Stelt P, Sanderink G. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod. 2009;31(2): 129-134.28 Farronato G,Giannini L,Galbiati G,et al.Verification of the Reliability of the Three-dimensional Virtual Presurgical Orthodontic Diagnostic Protocol.J Craniofac Surg. 2014;25(6):2013-2016.29 Hammoudeh JA,Howell LK,Boutros S,et al.Current Status of Surgical Planning for Orthognathic Surgery: Traditional Methods versus 3D Surgical Planning. Plast Reconstr Surg Glob Open. 2015;3(2):e30730 Kusnoto B,Evans CA.Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofacial Orthop. Am J Orthod Dentofacial Orthop. 2002;122(4):342-348.31 Kovacs L,Zimmermann A,Brockmann G,et al.Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner. IEEE Trans Med Imaging. 2006;25(6):742-754.32 Kang SH, Kim MK, Park WS, et al.Accurate computerised mandibular simulation in orthognathic surgery: a new method for integrating the planned postoperative occlusion model. Br J Oral Maxillofac Surg. 2010;48(4):305-307.33 Uechi J,Okayama M,Shibata T,et al.A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am J Orthod Dentofacial Orthop. 2006;130(6):786-798.34 Mavili ME,Canter HI,Saglam-Aydinatay B,et al.Use of Three-Dimensional Medical Modeling Methods for Precise Planning of Orthognathic Surgery. J Craniofac Surg. 2007;18(4): 740-747.35 Swennen GR, Barth EL, Eulzer C, et al.The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.Int J Oral Maxillofac Surg.2007;36(2):146-152.36 Terajima M,Yanagita N,Ozeki K,et al. Three-dimensional analysis system for orthognathic surgery patients with jaw deformities. Am J Orthod Dentofacial Orthop. 2008;134(1):100-111.37 Metzger MC, Hohlweg-Majert B, Schwarz U, et al. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论