已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数切线及含参问题讨论求曲线的切线方程是导数的重要应用之一,函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。切线问题分类及解法:题型一:已知切点,求曲线的切线方程;此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可曲线在点处的切线方程为() 题型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决与直线的平行的抛物线的切线方程是() 题型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,待定切点法。求过曲线上的点(1.-1)的切线方程。题型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解求过点且与曲线相切的直线方程变式1、已知函数的图象在点处的切线方程是,则 。变式2、导数含参问题讨论题型一:求导后,考虑函数为零是否有实根,进行分类讨论。 1.,讨论函数F(x)的单调性 2. 设a0,讨论函数的单调性3. 已知函数求单调区间4.已知函数,求单调区间题型二:求导后,不知道导数为零的根是否落在定义域内,进行分类讨论。用导数解决函数问题若求导后,研究函数的导数问题时能转化为研究二次函数问题时,二次项的系数含参数按系数大于零、等于零、小于零分类;再按在二次项的系数不等于零时对判别式按0、=0、0;在0时,求导函数的零点再根据零点是否在在定义域内进行套论,若零点含参数在对零点之间的大小进行讨论1.设函数,求其单调区间2. 已知a是实数,函数(1)求单调区间(2)设g(a)为f(x)在区间0.2上的最小值。 写出g(a)表达式 求a的取值范围,使3.已知函数,求单调区间题型三:求导后,导数为零的根有参数且落在定义域内,但不知实根大小关系进行分类讨论。用导数解决函数问题若求导后,研究函数的导数问题时能转化为研究二次函数问题时,二次项的系数含参数按系数大于零、等于零、小于零分类;再按在二次项的系数不等于零时对判别式按0、=0、0;在0时,求导函数的零点再根据零点是否在在定义域内进行套论,若零点含参数在对零点之间的大小进行讨论1.,求单调区间2.,当时,求单调区间题型四:求参数的范围时由于不能分离出参数而引起的对参数进行的讨论1.已知,当a0时,恒成立,求实数a的取值范围.2. 设函数,求极值点3.已知函数(1)讨论的单调区间;(2)若函数在区间内单调递减,求的取值范围。题型五:结合函数的图像与性质求参数的取值范围问题1.设为实数,函数。(1)求的极值;(2)当在什么范围内取值时,曲线与轴仅有一个交点。2.已知函数有三个极值点。证明:;解题方法:结合函数图像求解参数问题,题目中一般出现零点,根,等关键词,利用二次函数图像或数轴穿根的方法,将利用导数所求的极值点标在图像上,根据题意求解问题。题型六:导数解决不等式问题1对于函数(1)若函数在处的切线方程为,求的值;(2)设是函数的两个极值点,且,证明:2.函数f(x)=,解不等式f(x)13.已知函数,对f(x)定义域内任意的x的值,f(x)27恒成立,求a的取值范围 解题方法:题中出现不等式符号时,一般利用不等式构造函数方程,将所含参数代数式移到不等式一侧,构造函数方程并求导,利用极大值大于最大值,极小值小于最小值解题。题型七:已知区间单调或不单调,求解参变量的范围1.设函数(1) 求曲线在点处的切线方程;(2)求函数的单调区间(3)若函数在区间内单调递增,求的取值范围。2.已知函数(1)讨论的单调区间;(2)若函数在区间内单调递减,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理医院岗前培训考试及答案解析
- 2025-2030绿色建材认证体系对免漆门行业发展影响评估
- 2025-2030绿色信贷政策对漂洗助剂企业融资成本影响量化分析
- 2025-2030绘本阅读推广生态构建与数字化阅读产品开发趋势报告
- 2025-2030线粒体功能优化剂在唐氏综合征儿童认知改善中的临床转化障碍分析
- 2025-2030纳米药物递送系统专利布局与技术壁垒分析报告
- 2025-2030纳米材料应用领域拓展分析与科技投资战略研究报告
- 2025-2030纳米材料产业市场前景及经济效益预测分析报告
- 2025-2030红外热成像器件非制冷技术突破与安防应用渗透率分析
- 2025-2030精酿啤酒行业市场调查及消费升级与竞争格局分析报告
- 干眼科普健康宣教
- 粮库安全生产培训
- 肝脾破裂护理课件
- 口腔护理并发症的预防及处理
- 汽车4s店生产设备管理制度
- 中国邮政集团有限公司贵州省分公司招聘笔试真题2024
- Java EE-形考任务一-国开(LN)-参考资料
- 商品育肥猪饲料原料生产基地可行性研究报告
- 中国石油大学(北京)《习概》2023-2024学年第二学期期末试卷
- TSG Z7002-2022特种设备检测机构核准规则
- 设备试验合作协议书范本
评论
0/150
提交评论