




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数结合“洛必达法则”巧解恒成立问题第一部分:历届导数高考压轴题 1.2006年全国2理设函数f(x)(x1)ln(x1),若对所有的x0,都有f(x)ax成立,求实数a的取值范围2.2006全国1理已知函数.()设,讨论的单调性;()若对任意恒有,求的取值范围.3.2007全国1理设函数()证明:的导数;()若对所有都有,求的取值范围4.2008全国2理设函数()求的单调区间;()如果对任何,都有,求的取值范围5.2008辽宁理设函数.求的单调区间和极值;是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明理由.6.2010新课标理设函数=.()若,求的单调区间;()若当x0时0,求a的取值范围7.2010新课标文已知函数.()若在时有极值,求函数的解析式;()当时,求的取值范围.8.2010全国大纲理设函数.()证明:当时,;()设当时,求的取值范围.9.2011新课标理已知函数,曲线在点处的切线方程为.()求、的值;()如果当,且时,求的取值范围.10.自编自编:若不等式对于恒成立,求的取值范围.第二部分:新课标高考命题趋势及方法1. 新课标高考命题趋势近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为了热点.2.分类讨论和假设反证 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数法,一部分题用这种方法很奏效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路分类讨论和假设反证的方法.3.洛必达法则 虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.第三部分:洛必达法则及其用法1.洛必达法则洛必达法则:设函数、满足:(1);(2)在内,和都存在,且;(3) (可为实数,也可以是).则.(可连环使用)注意 使用洛必达法则时,是对分子、分母分别求导,而不是对它们的商求导,求导之后再求极限得最值。2.2011新课标理的常规解法已知函数,曲线在点处的切线方程为.()求、的值;()如果当,且时,求的取值范围.()略解得,.()方法一:分类讨论、假设反证法由()知,所以.考虑函数,则(i)当时,由知,当时,.因为,所以当时,可得;当时,可得,从而当且时,即;(ii)当时,由于当时,故,而,故当时,可得,与题设矛盾.(iii)当时, ,而,故当时,可得,与题设矛盾.综上可得,的取值范围为.注:分三种情况讨论:;不易想到.尤其是时,许多考生都停留在此层面,举反例更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.3.运用洛必达和导数解2011年新课标理当,且时,即,也即,记,且则,记,则,从而在上单调递增,且,因此当时,当时,;当时,当时,所以在上单调递减,在上单调递增.由洛必达法则有 ,即当,且时,.因为恒成立,所以.综上所述,当,且时,成立,的取值范围为.注:本题由已知很容易想到用分离变量的方法把参数分离出来.然后对分离出来的函数求导,研究其单调性、极值.此时遇到了“当时,函数值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.当然这一法则出手的时机:(1)所构造的分式型函数在定义域上单调(2)是型。4.运用洛必达和导数解2010新课标理设函数.()若,求的单调区间;()当时,求的取值范围.应用洛必达法则和导数()当时,即.当时,;当时,等价于.记 ,则. 记 ,则,当时,所以在上单调递增,且,所以在上单调递增,且,因此当时,从而在上单调递增.由洛必达法则有,即当时,所以当时,所以,因此.综上所述,当且时,成立.5.运用洛必达和导数解自编题自编:若不等式对于恒成立,求的取值范围.解:应用洛必达法则和导数当时,原不等式等价于.记,则.记,则.因为,所以在上单调递减,且,所以在上单调递减,且.因此在上单调递减,且,故,因此在上单调递减.由洛必达法则有,即当时,即有.故时,不等式对于恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: 可以分离变量;用导数可以确定分离变量后一端新函数的单调性;出现“”型式子.6.运用洛必达和导数解2010年新课标文2010海南宁夏文(21)已知函数.()若在时有极值,求函数的解析式;()当时,求的取值范围.解:()略()应用洛必达法则和导数当时,即.当时,;当时,等价于,也即.记,则.记,则,因此在上单调递增,且,所以,从而在上单调递增.由洛必达法则有,即当时,所以,即有.综上所述,当,时,成立.7.运用洛必达和导数解2010年大纲理2010全国大纲理(22)设函数.()证明:当时,;()设当时,求的取值范围.解:()略()应用洛必达法则和导数由题设,此时.当时,若,则,不成立;当时,当时,即;若,则;若,则等价于,即.记,则.记,则,因此,在上单调递增,且,所以,即在上单调递增,且,所以.因此,所以在上单调递增.由洛必达法则有,即当时,即有,所以.综上所述,的取值范围是.8.运用洛必达和导数解2008年全国2理设函数()求的单调区间;()如果对任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旧外墙喷漆改造施工方案
- 债务重组协议债务减免与清偿期限
- 2025国家电投所属中国电力招聘笔试参考题库附带答案详解
- 2024-2025学年人教版8年级数学上册《 整式的乘法与因式分解》综合训练试题(含解析)
- 2025年抗菌药物合理使用培训考核题及答案
- 2023年度安全监察人员考前冲刺试卷附答案详解【基础题】
- 2025年电梯考试通关题库含答案详解【典型题】
- 2024年高职单招测试卷附完整答案详解(有一套)
- 期货从业资格之《期货法律法规》强化训练题型汇编附答案详解【培优】
- 2024-2025学年度电梯考试题库及参考答案详解(突破训练)
- 2025年新版病历书写规范与解读
- 2025鄂尔多斯市东胜城市建设开发投资集团有限责任公司招聘笔试备考题库及答案详解参考
- 2025年招投标管理考试题库
- 渠道维护协议书
- Unit 2 Home Sweet Home 重点短语和句式-人教版英语八年级上册
- 黄体破裂护理常规课件
- 防治大气污染课件
- 环境监测质量管理课件
- 国际音标教学课件
- 2025-2030中国可变磁阻旋转变压器行业产销状况与应用趋势预测报告
- (高清版)DB31∕T 310001-2020 船舶水污染物内河接收设施配置规范
评论
0/150
提交评论