




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Introductionofthiscourse,李宏毅Hung-yiLee,WelcomeourTAs,林資偉,盧柏儒,方為,宋昀蓁,賴顗安,沈家豪,林賢進,敖家維,吳柏瑜,Whatarewegoingtolearn?,WhatisMachineLearning?,“Hi”,“Howareyou”,“Goodbye”,Yousaid“Hello”,Alargeamountofaudiodata,Youwritetheprogramforlearning.,Learning.,“monkey”,“cat”,“dog”,WhatisMachineLearning?,Thisis“cat”,Alargeamountofimages,Youwritetheprogramforlearning.,Learning.,MachineLearningLookingforaFunction,SpeechRecognitionImageRecognitionPlayingGoDialogueSystem,“Cat”,“Howareyou”,“5-5”,“Hello”,“Hi”,(whattheusersaid),(systemresponse),(nextmove),Framework,Asetoffunction,“cat”,“dog”,“money”,“snake”,Model,“cat”,ImageRecognition:,Framework,Asetoffunction,“cat”,ImageRecognition:,Model,TrainingData,Goodnessoffunctionf,Better!,“monkey”,“cat”,“dog”,functioninput:,functionoutput:,Framework,Asetoffunction,“cat”,ImageRecognition:,Model,TrainingData,Goodnessoffunctionf,“monkey”,“cat”,“dog”,Pickthe“Best”Function,Using,“cat”,Training,Testing,Step1,Step2,Step3,LearningMap,SupervisedLearning,Regression,LinearModel,StructuredLearning,Semi-supervisedLearning,TransferLearning,UnsupervisedLearning,ReinforcementLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,LearningMap,Regression,Theoutputofthetargetfunctionis“scalar”.,f,今天上午PM2.5,昨天上午PM2.5,.,明天上午PM2.5,HW1,(scalar),9/01上午PM2.5=63,9/02上午PM2.5=65,9/03上午PM2.5=100,TrainingData:,9/12上午PM2.5=30,9/13上午PM2.5=25,9/14上午PM2.5=20,Input:,Input:,Output:,Output:,預測PM2.5,LearningMap,Regression,Classification,Classification,BinaryClassification,Multi-classClassification,Functionf,Functionf,Input,Input,YesorNo,Class1,Class2,ClassN,BinaryClassification,Spamfiltering,(http:/spam-filter-,Function,Yes/No,Yes,No,HW2,TrainingData,Multi-classClassification,http:/top-breaking-,Function,政治,體育,經濟,體育,政治,財經,TrainingData,DocumentClassification,LearningMap,Regression,LinearModel,Classification,DeepLearning,Non-linearModel,Classification-DeepLearning,ImageRecognition,Function,“monkey”,“cat”,“dog”,“monkey”,“cat”,“dog”,TrainingData,Eachpossibleobjectisaclass,HW3,ConvolutionalNeuralNetwork(CNN),Classification-DeepLearning,PlayingGO,Function,(19x19classes),Nextmove,Eachpositionisaclass,一堆棋譜,TrainingData,進藤光v.s.社清春,黑:5之五,白:天元,黑:五之5,Classification-DeepLearning,PlayingGO,Function,(19x19classes),Nextmove,Eachpositionisaclass,一堆棋譜,TrainingData,進藤光v.s.社清春,黑:5之五,白:天元,黑:五之5,Input:黑:5之五,Output:天元,Input:黑:5之五、白:天元,Output:五之5,LearningMap,SupervisedLearning,Regression,LinearModel,Semi-supervisedLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,TrainingData:,Input/outputpairoftargetfunction,Functionoutput=label,Semi-supervisedLearning,Labelleddata,Unlabeleddata,cat,dog,(Imagesofcatsanddogs),Forexample,recognizingcatsanddogs,LearningMap,SupervisedLearning,Regression,LinearModel,StructuredLearning,Semi-supervisedLearning,TransferLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,TransferLearning,Labelleddata,cat,dog,Datanotrelatedtothetaskconsidered(canbeeitherlabeledorunlabeled),elephant,Haruhi,Forexample,recognizingcatsanddogs,LearningMap,SupervisedLearning,Regression,LinearModel,StructuredLearning,Semi-supervisedLearning,TransferLearning,UnsupervisedLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,HW4,http:/top-breaking-,UnsupervisedLearning,MachineReading:Machinelearnsthemeaningofwordsfromreadingalotofdocumentswithoutsupervision,UnsupervisedLearning,Drawsomething!,Ref:,UnsupervisedLearning,Chung&Lee,INTERSPEECH2016,Machinelistenstolotsofaudiobook,HowaboutmachinewatchTV?,LearningMap,SupervisedLearning,Regression,LinearModel,StructuredLearning,Semi-supervisedLearning,TransferLearning,UnsupervisedLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,StructuredLearning,BeyondClassification,“機器學習”,“大家好,歡迎大家來修機器學習”,“MachineLearning”,f,SpeechRecognition,f,MachineTranslation,LearningMap,SupervisedLearning,Regression,LinearModel,StructuredLearning,Semi-supervisedLearning,TransferLearning,UnsupervisedLearning,ReinforcementLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,ReinforcementLearning,Supervisedv.s.Reinforcement,SupervisedReinforcement,Agent,.,.,Bad,“Hello”,Say“Hi”,“Byebye”,Say“Goodbye”,Learningfromteacher,Learningfromcritics,Supervisedv.s.Reinforcement,Supervised:ReinforcementLearning,Nextmove:“5-5”,Nextmove:“3-3”,Firstmove,manymoves,Win!,AlphaGoissupervisedlearning+reinforcementlearning.,LearningMap,SupervisedLearning,Regression,LinearModel,StructuredLearning,Semi-supervisedLearning,TransferLearning,UnsupervisedLearning,ReinforcementLearning,Classification,DeepLearning,SVM,decisiontree,K-NN,Non-linearModel,scenario,method,task,WhyIneedtolearnMachineLearning?,AI即將取代多數的工作?,NewJobinAIAge,http:/www.express.co.uk/news/science/651202/First-step-towards-The-Terminator-becoming-reality-AI-beats-champ-of-world-s-oldest-game,AI訓練師,機器不是自己會學嗎?為什麼需要AI訓練師,戰鬥是寶可夢在打,為什麼需要寶可夢訓練師?,AI訓練師,寶可夢訓練師,寶可夢訓練師要挑選適合的寶可夢來戰鬥寶可夢有不同的屬性召喚出來的寶可夢不一定聽話E.g.小智的噴火龍需要足夠的經驗,AI訓練師,在step1,AI訓練師要挑選合適的模型不同模型適合處理不同的問題不一定能在step3找出bestfunctionE.g.DeepLearning需要足夠的經驗,AI訓練師,厲害的AI,AI訓練師功不可沒讓我們一起朝AI訓練師之路邁進,.tw/webonly_content_10787.html,Policy,上課教材,以後上課會錄音上課投影片和錄音會放到ceiba和李宏毅的個人網頁上李宏毅的個人網頁:.tw/tlkagk/courses_ML16.html,FB社團,社團:MachineLearning(2016,Fall),評量方式,不點名、不考試作業:沒有分組、每個人都要繳交作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场趋势大数据分析服务合作合同
- 电信用户流失预警分析服务合同
- 2025年购买限价房预售合同
- 浆砌石劳务合同4篇
- 长沙房屋租房合同范本3篇
- 智能巡检机器人运维服务费合同
- 离婚协议书模板:子女抚养费支付及财产分割协议
- 税务顾问专项服务协议范本:税收筹划与内部管理
- 《涵盖子女抚养、教育、医疗的夫妻离婚协议》
- 水电安装合同书水利工程合作付款与质量保证体系
- GB/T 31341-2014节能评估技术导则
- GB/T 29114-2012燃气轮机液体燃料
- GB/T 24218.3-2010纺织品非织造布试验方法第3部分:断裂强力和断裂伸长率的测定(条样法)
- GB/T 18690.1-2009农业灌溉设备微灌用过滤器第1部分:术语、定义和分类
- GB/T 12470-2018埋弧焊用热强钢实心焊丝、药芯焊丝和焊丝-焊剂组合分类要求
- GB/T 10799-2008硬质泡沫塑料开孔和闭孔体积百分率的测定
- GA/T 1193-2014人身损害误工期、护理期、营养期评定规范
- FCI测试试题附答案
- 博微配电网工程设计软件
- 教育科研:教师职业成长的阶梯课件
- C语言程序设计案例教程-完整版ppt全套教学教程(最新)
评论
0/150
提交评论