




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目标,1、理解掌握一元二次方程的四种解法;2、了解什么是配方法?3、会用配方法解一元二次方程。,自学指导,1、阅读:P35P36,2、思考:(1)了解什么是配方法?(2)会用配方法解一元二次方程。,一般地,对于形如x2=a(a0)的方程,根据平方根的定义,可解得这种解一元二次方程的方法叫做开平方法.,例1.用开平方法解下列方程:(1)3x227=0;(2)(2x3)2=7,巩固练习1,()方程的根是()方程的根是(3)方程的根是,2.选择适当的方法解下列方程:(1)x2810(2)x250(3)(x1)2=4(4)x22x5=0,X1=0.5,x2=0.5,X13,x23,X12,x21,合作探究,这种方程怎样解?,变形为,的形式(为非负常数),变形为,X24x10,(x2)2=3,把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.,(1)x28x=(x4)2(2)x24x=(x)2(3)x2_x9=(x)2,填空,配方时,等式两边同时加上的是一次项系数一半的平方,16,6,3,4,2,例2:用配方法解下列方程(1)x26x=1(2)x2=65x,用配方法解一元二次方程的步骤:,移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数一半的平方;开方:根据平方根意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.,(2)x24x3=0,(1)x212x=9,做一做,练习3:用配方法解下列方程:,4.用配方法说明:不论k取何实数,多项式k23k5的值必定大于零.,思考:先用配方法解下列方程:(1)x22x10(2)x22x40(3)x22x10然后回答下列问题:(1)你在求解过程中遇到什么问题?你是怎样处理所遇到的问题的?(2)对于形如x2pxq0这样的方程,在什么条件下才有实数根?,谈谈你的收获!,1.一般地,对于形如x2=a(a0)的方程,根据平方根的定义,可解得这种解一元二次方程的方法叫做开平方法.,2.把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.,注意:配方时,等式两边同时加上的是一次项系数一半的平方.,用配方法解一元二次方程的步骤:,移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数一半的平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询公司不退费惩罚方案
- 消防队主题活动教学方案及实践案例
- 阳光下午茶活动方案策划
- 制造业智能工厂设计方案
- 三年级数学教案:数的估算技巧
- 服装厂生产管理标准化操作手册
- 民间中医文化活动方案策划
- 六年级音乐教学单元教案模板
- 消防设备定期维护与检测规范
- 排水管盖板施工方案
- 河北省承德市隆化县第二中学2023-2024学年九年级上学期期中考试物理试题(无答案)
- 2024年新人教版八年级上册物理全册教案
- 伤口造口专科护士进修汇报
- MOOC 实验室安全学-武汉理工大学 中国大学慕课答案
- 彩钢房建造合同
- 2型糖尿病低血糖护理查房课件
- 医院物业服务投标方案
- 高压燃气管道施工方案
- 国家免疫规划疫苗儿童免疫程序说明-培训课件
- GB/T 13298-1991金属显微组织检验方法
- 劳动人事争议仲裁案例分析与问题探讨课件
评论
0/150
提交评论