




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年中考数学专题复习二次函数与直角三角形例. (二一二年枣庄市本题满分10分)如图,在平面直角坐标系中,将一块等腰直角三角板斜靠在两坐标轴上放在第二象限,点C的坐标为点在抛物线的图象上,过点作轴,垂足为,且点横坐标为(1)求证:;(2)求所在直线的函数关系式;ABDCOxy(第25题图)(3)抛物线的对称轴上是否存在点,使是以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由25(本题满分10分) 解:(1) , 1分为等腰直角三角形,在和中,(AAS)3分(2)C点坐标为,BD=CO=1B点的横坐标为,B点坐标为 4分设所在直线的函数关系式为,则有解之,得BC所在直线的函数关系式为6分(3)存在二次函数解析式为=,对称轴为直线 7分若以为直角边,点为直角顶点,对称轴上有一点,使ABDCOxy(第25题图)P1P2 点为直线与对称轴直线的交点由题意,得 解之,得8分若以为直角边,点为直角顶点,对称轴上有一点,使,过点作,交对称轴直线于点CD=OA, A(0,2)易求得直线的解析式为,由 得满足条件的点有两个,坐标分别为10分1(2012赤峰)如图,抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由考点:二次函数综合题。解答:解:(1)y=x2bx5,|OC|=5,|OC|:|OA|=5:1,|OA|=1,即A(1,0),(2分)把A(1,0)代入y=x2bx5得(1)2+b5=0,解得b=4,抛物线的解析式为y=x24x5;(4分)(2)点C与点F关于对称轴对称,C(0,5),设F(x0,5),x024x05=5,解得x0=0(舍去),或x0=4,F(4,5),(6分)对称轴为x=2,设直线AF的解析式为y=kx+b,把F(4,5),A(1,0),代入y=kx+b,得,解得,所以,直线FA的解析式为y=x1;(8分)(3)存在(9分)理由如下:当FCP=90时,点P与点E重合,点E是直线y=x1与y轴的交点,E(0,1),P(0,1),(10分)当CF是斜边时,过点C作CPAF于点P(x1,x11),ECF=90,E(0,1),C(0,5),F(4,5),CE=CF,EP=EF,CP=PF,点P在抛物线的对称轴上,(11分)x1=2,把x1=2代入y=x1,得y=3,P(2,3),综上所述,直线AF上存在点P(0,1)或(0,1)使CFP是直角三角形(12分)2如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A抛物线y=x2+bx+c的图象过点E(1,0),并与直线相交于A、B两点(1)求抛物线的解析式(关系式);(2)过点A作ACAB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由考点:二次函数综合题。分析:(1)首先求出A点坐标,然后利用待定系数法求出抛物线的解析式;(2)利用相似三角形(RtOCARtOPA)比例线段之间的关系,求出线段OC的长度,从而得到C点的坐标,如题图所示;(3)存在所求的M点,在x轴上有3个,y轴上有2个,注意不要遗漏求点M坐标的过程并不复杂,但要充分利用相似三角形比例线段之间的关系解答:解:(1)直线解析式为y=x+2,令x=0,则y=2,A(0,2),抛物线y=x2+bx+c的图象过点A(0,2),E(1,0),解得抛物线的解析式为:y=x2+x+2 (2)直线y=x+2分别交x轴、y轴于点P、点A,P(6,0),A(0,2),OP=6,OA=2ACAB,OAOP,RtOCARtOPA,OC=,又C点在x轴负半轴上,点C的坐标为C(,0)(3)抛物线y=x2+x+2与直线y=x+2交于A、B两点,令x2+x+2=x+2,解得x1=0,x2=,B(,)如答图所示,过点B作BDx轴于点D,则D(,0),BD=,DP=6=点M在坐标轴上,且MAB是直角三角形,有以下几种情况:当点M在x轴上,且BMAB,如答图所示设M(m,0),则MD=mBMAB,BDx轴,即,解得m=,此时M点坐标为(,0);当点M在x轴上,且BMAM,如答图所示设M(m,0),则MD=mBMAM,易知RtAOMRtMDB,即,化简得:m2m+=0,解得:x1=,x2=,此时M点坐标为(,0),(,0);(说明:此时的M点相当于以AB为直径的圆与x轴的两个交点)当点M在y轴上,且BMAM,如答图所示此时M点坐标为(0,);当点M在y轴上,且BMAB,如答图所示设M(0,m),则AM=2=,BM=,MM=m易知RtABMRtMBM,即,解得m=,此时M点坐标为(0,)综上所述,除点C外,在坐标轴上存在点M,使得MAB是直角三角形符合条件的点M有5个,其坐标分别为:(,0)、(,0)、(,0)、(0,)或(0,)点评:本题综合考查了二次函数的图象与性质、待定系数法求函数解析式、一次函数、解一元二次方程、相似三角形的判定与性质等重要知识点难点在于第(3)问,所求的M点有5个(x轴上有3个,y轴上有2个),需要分情况讨论,不要遗漏3.(2012海南)如图,顶点为P(4,4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴于点M,点M、N关于点P对称,连接AN、ON(1)求该二次函数的关系式.(2)若点A的坐标是(6,3),求ANO的面积.(3)当点A在对称轴右侧的二次函数图象上运动,请解答下列问题:证明:ANM=ONMANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由.【答案】解:(1)二次函数图象的顶点为P(4,4),设二次函数的关系式为。 又二次函数图象经过原点(0,0),解得。 二次函数的关系式为,即。 (2)设直线OA的解析式为,将A(6,3)代入得,解得。 直线OA的解析式为。 把代入得。M(4,2)。又点M、N关于点P对称,N(4,6),MN=4。 (3)证明:过点A作AH于点H,与x轴交于点D。则 设A(),则直线OA的解析式为。则M(),N(),H()。OD=4,ND=,HA=,NH=。ANM=ONM。不能。理由如下:分三种情况讨论:情况1,若ONA是直角,由,得ANM=ONM=450,AHN是等腰直角三角形。HA=NH,即。整理,得,解得。此时,点A与点P重合。故此时不存在点A,使ONA是直角。情况2,若AON是直角,则。 ,。整理,得,解得,。此时,故点A与原点或与点P重合。故此时不存在点A,使AON是直角。情况3,若NAO是直角,则AMNDMODON,。OD=4,MD=,ND=,。整理,得,解得。此时,点A与点P重合。故此时不存在点A,使ONA是直角。综上所述,当点A在对称轴右侧的二次函数图象上运动时,ANO不能成为直角三角形。4(2012湖南衡阳10分)(2012衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动(点P异于点O)(1)求此抛物线的解析式(2)过点P作CB所在直线的垂线,垂足为点R,求证:PF=PR;是否存在点P,使得PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断RSF的形状考点:二次函数综合题。 专题:代数几何综合题;数形结合。分析:(1)根据题意能判断出点O是矩形ABCD的对角线交点,因此D、B关于原点对称,A、B关于x轴对称,得到A、D的坐标后,利用待定系数法可确定抛物线的解析式(2)首先根据抛物线的解析式,用一个未知数表示出点P的坐标,然后表示出PF、RF的长,两者进行比较即可得证;首先表示RF的长,若PFR为等边三角形,则满足PF=PR=FR,列式求解即可;根据的思路,不难看出QF=QS,若连接SF、RF,那么QSF、PRF都是等腰三角形,先用SQF、RPF表示出DFS、RFP的和,用180减去这个和值即可判断出RSF的形状解答:解:(1)抛物线的顶点为坐标原点,A、D关于抛物线的对称轴对称;E是AB的中点,O是矩形ABCD对角线的交点,又B(2,1)A(2,1)、D(2,1);由于抛物线的顶点为(0,0),可设其解析式为:y=ax2,则有:4a=1,a=抛物线的解析式为:y=x2(2)证明:由抛物线的解析式知:P(a,a2),而R(a,1)、F(0,1),则:则:PF=a2+1,PR=a2+1PF=PR由得:RF=;若PFR为等边三角形,则RF=PF=PR,得:=a2+1,即:a4a23=0,得:a2=4(舍去),a2=12;a=2,a2=3;存在符合条件的P点,坐标为(2,3)、(2,3)同可证得:QF=QS;在等腰SQF中,1=(180SQF);同理,在等腰RPF中,2=(180RPF);QSBC、PRBC,QSPR,SQP+RPF=1801+2=(360SQFRPF)=90SFR=18012=90,即SFR是直角三角形点评:该题考查了二次函数的性质及解析式的确定、矩形的性质、特殊三角形的判定等知识,综合性较强在解答题目时,要注意数形结合,并灵活应用前面小题中证得的结论5(2012广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式考点:二次函数综合题。分析:(1)A、B点为抛物线与x轴交点,令y=0,解一元二次方程即可求解(2)根据题意求出ACD中AC边上的高,设为h在坐标平面内,作AC的平行线,平行线之间的距离等于h根据等底等高面积相等的原理,则平行线与坐标轴的交点即为所求的D点从一次函数的观点来看,这样的平行线可以看做是直线AC向上或向下平移而形成因此先求出直线AC的解析式,再求出平移距离,即可求得所作平行线的解析式,从而求得D点坐标注意:这样的平行线有两条,如答图1所示(3)本问关键是理解“以A、B、M为顶点所作的直角三角形有且只有三个”的含义因为过A、B点作x轴的垂线,其与直线l的两个交点均可以与A、B点构成直角三角形,这样已经有符合题意的两个直角三角形;第三个直角三角形从直线与圆的位置关系方面考虑,以AB为直径作圆,当直线与圆相切时,根据圆周角定理,切点与A、B点构成直角三角形从而问题得解注意:这样的切线有两条,如答图2所示解答:解:(1)令y=0,即=0,解得x1=4,x2=2,A、B点的坐标为A(4,0)、B(2,0)(2)SACB=ABOC=9,在RtAOC中,AC=5,设ACD中AC边上的高为h,则有ACh=9,解得h=如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=1的两个交点即为所求的点D设l1交y轴于E,过C作CFl1于F,则CF=h=,CE=设直线AC的解析式为y=kx+b,将A(4,0),B(0,3)坐标代入,得到,解得,直线AC解析式为y=x+3来源:学.科.网直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,直线l1的解析式为y=x+3=x则D1的纵坐标为(1)=,D1(4,)同理,直线AC向上平移个长度单位得到l2,可求得D2(1,)综上所述,D点坐标为:D1(4,),D2(1,)(3)如答图2,以AB为直径作F,圆心为F过E点作F的切线,这样的切线有2条连接FM,过M作MNx轴于点NA(4,0),B(2,0),F(1,0),F半径FM=FB=3又FE=5,则在RtMEF中,ME=4,sinMFE=,cosMFE=在RtFMN中,MN=MNsinMFE=3=,FN=MNcosMFE=3=,则ON=,M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3同理,可以求得另一条切线的解析式为y=x3综上所述,直线l的解析式为y=x+3或y=x3点评:本题解题关键是二次函数、一次函数以及圆等知识的综合运用难点在于第(3)问中对于“以A、B、M为顶点所作的直角三角形有且只有三个”条件的理解,这可以从直线与圆的位置关系方面入手解决本题难度较大,需要同学们对所学知识融会贯通、灵活运用6(2012重庆)已知:如图,在平面直角坐标系中,已知RtABC的两条直角边BABC分别在y轴上X轴上,且点B与点O重合,点A(0,3)点C(,), E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和RtABC在BC的同侧(1)当正方形的顶点F恰好落在边AC上时,求过B.C.F三点的函数解析式;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEF为正方形BEFG,当点E与点C重合时停止平移设平移的距离为t,正方形BEFG的边EF与AC交于点M,点(2,3),连接BD,BM,DM,是否存在这样的t,使BDM是直角三角形?若存在,求出t的值;若不存在,请说明理由;()()(3)在(2)问的平移过程中,设正方形BEFG与ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围考点:相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形。.解答:解:(1)如图,设正方形BEFG的边长为x,则BE=FG=BG=x,AB=3,BC=6,AG=ABBG=3x,GFBE,AGFABC,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图,过点D作DHBC于H,则BH=AD=2,DH=AB=3,由题意得:BB=HE=t,HB=|t2|,EC=4t,在RtBME中,BM2=ME2+BE2=22+(2t)2=t22t+8,EFAB,MECABC,即,ME=2t,在RtDHB中,BD2=DH2+BH2=32+(t2)2=t24t+13,过点M作MNDH于N,则MN=HE=t,NH=ME=2t,DN=DHNH=3(2t)=t+1,在RtDMN中,DM2=DN2+MN2=t2+t+1,()若DBM=90,则DM2=BM2+BD2,即t2+t+1=(t22t+8)+(t24t+13),解得:t=,()若BMD=90,则BD2=BM2+DM2,即t24t+13=(t22t+8)+(t2+t+1),解得:t1=3+,t2=3(舍去),t=3+;()若BDM=90,则BM2=BD2+DM2,即:t22t+8=(t24t+13)+(t2+t+1),此方程无解,综上所述,当t=或3+时,BDM是直角三角形;(3)如图,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,CE=,t=BB=BCBEEC=62=,ME=2t,FM=t,当0t时,S=SFMN=tt=t2,当G在AC上时,t=2,EK=ECtanDCB=EC=(4t)=3t,FK=2EK=t1,NL=AD=,FL=t,当t2时,S=SFMNSFKL=t2(t)(t1)=t2+t;如图,当G在CD上时,BC:CH=BG:DH,即BC:4=2:3,解得:BC=,EC=4t=BC2=,t=,BN=BC=(6t)=3t,GN=GBBN=t1,当2t时,S=S梯形GNMFSFKL=2(t1+t)(t)(t1)=t2+2t,如图,当t4时,BL=BC=(6t),EK=EC=(4t),BN=BC=(6t)EM=EC=(4t),S=S梯形MNLK=S梯形BEKLS梯形BEMN=t+综上所述:当0t时,S=t2,当t2时,S=t2+t;当2t时,S=t2+2t,当t4时,S=t+7(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点ACD均在坐标轴上,且AB=5,sinB=(1)求过ACD三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上AE两点之间的一个动点,当P点在何处时,PAE的面积最大?并求出面积的最大值考点:二次函数综合题。专题:动点型。分析:(1)由菱形ABCD的边长和一角的正弦值,可求出OCODOA的长,进而确定ACD三点坐标,通过待定系数法可求出抛物线的解析式(2)首先由AB的坐标确定直线AB的解析式,然后求出直线AB与抛物线解析式的两个交点,然后通过观察图象找出直线y1在抛物线y2图象下方的部分(3)该题的关键点是确定点P的位置,APE的面积最大,那么SAPE=AEh中h的值最大,即点P离直线AE的距离最远,那么点P为与直线AB平行且与抛物线有且仅有的唯一交点解答:解:(1)四边形ABCD是菱形,AB=AD=CD=BC=5,sinB=sinD=;RtOCD中,OC=CDsinD=4,OD=3;OA=ADOD=2,即:A(2,0)、B(5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x3),得:2(3)a=4,a=;抛物线:y=x2+x+4(2)由A(2,0)、B(5,4)得直线AB:y1=x;由(1)得:y2=x2+x+4,则:,解得:,;由图可知:当y1y2时,2x5(3)SAPE=AEh,当P到直线AB的距离最远时,SABC最大;若设直线LAB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=x+b,当直线L与抛物线有且只有一个交点时,x+b=x2+x+4,且=0;求得:b=,即直线L:y=x+;可得点P(,)由(2)得:E(5,),则直线PE:y=x+9;则点F(,0),AF=OA+OF=;PAE的最大值:SPAE=SPAF+SAEF=(+)=综上所述,当P(,)时,PAE的面积最大,为点评:该题考查的是函数的动点问题,其中综合了特殊四边形、图形面积的求法等知识,找出动点问题中的关键点位置是解答此类问题的大致思路8(201山东青岛12分)如图,在ABC中,C90,AC6cm,BC8cm,D、E分别是AC、AB的中点,连接DE点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动连接PQ,设运动时间为t(0t4)s解答下列问题:(1)当t为何值时,PQAB?(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为ycm2,求y与t之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之比为SPQES五边形PQBCD129?若存在,求出此时t的值以及点E到PQ的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高中生物 第五章 细胞的能量供应和利用 5.1 降低化学反应活化能的酶说课稿 新人教版必修1
- 化肥厂复合肥存储管理办法
- 2025借款合同(个人与个人)范本
- 2025面的销售代理合同(广德恒盛)
- 阳光心理健康成长 教案-2023-2024学年高二下学期心理健康教育主题班会
- 活动1 策划迎新联欢会并认识MindMapper Jr教学设计-2023-2024学年小学信息技术(信息科技)五年级下册黔科版
- 公司员工试用期工作总结(集合14篇)
- 中医入职考试试题及答案
- 安全主任上岗培训内容课件
- 山西省吕梁市临县2024-2025学年八年级下学期期末物理试卷(无答案)
- 围手术期高血压专家管理共识
- 呼吸内科临床诊疗指南及操作规范
- 外科患者疼痛护理与管理
- 2024年共青团入团考试测试题库及答案
- 韩信点兵与中国剩余定理
- 2024年度网站域名合作契约
- 中国心力衰竭诊断和治疗指南2024解读(完整版)
- 第1章 直线与方程章末题型归纳总结(解析版)
- 眼球破裂伤护理查房
- Unit 1 (知识清单)-2024-2025学年三年级英语上学期期中复习讲练测(译林版三起·2024秋)
- 2024年秋季新人教版八年级上册物理全册教案(2024年新教材)
评论
0/150
提交评论