




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13-14学年度上学期高三理数综合练习 高三理科数学寒假作业数列答案1.在等差数列an中,a3a4a584,a973.(1)求数列an的通项公式;(2)对任意mN*,将数列an中落入区间(9m,92m)内的项的个数记为bm,求数列bm的前m项和Sm.解(1)因为an是一个等差数列,所以a3a4a53a484,即a428.设数列an的公差为d,则5da9a4732845,故d9.由a4a13d得28a139,即a11.所以ana1(n1)d19(n1)9n8(nN*)(2)对mN*,若9man92m,则9m89n92m8,因此9m11n92m1,故得bm92m19m1.于是Smb1b2b3bm(99392m1)(199m1).2已知两个等比数列an,bn,满足a1a(a0),b1a11,b2a22,b3a33.(1)若a1,求数列an的通项公式;(2)若数列an唯一,求a的值解(1)设数列an的公比为q,则b11a2,b22aq2q,b33aq23q2,由b1,b2,b3成等比数列得(2q)22(3q2)即q24q20,解得q12,q22.所以数列an的通项公式为an(2)n1或an(2)n1.(2)设数列an的公比为q,则由(2aq)2(1a)(3aq2),得aq24aq3a10(*),由a0得4a24a0,故方程(*)有两个不同的实根由数列an唯一,知方程(*)必有一根为0,代入(*)得a.3.在等比数列an中,a26,a318, (1)求数列an的通项公式;(2)若数列bn满足:bnan(1)nln an,求数列bn的前n项和Sn.解(1)由 a26,a318,得公比q3,因此a12,故an23n1.(2)因为bnan(1)nln an23n1(1)nln(23n1)23n1(1)nln 2(n1)ln 323n1(1)n(ln 2ln 3)(1)nnln 3,所以Sn2(133n1)111(1)n(ln 2ln 3)123(1)nnln 3.所以当n为偶数时,Sn2ln 33nln 31;当n为奇数时,Sn2(ln 2ln 3)ln 33nln 3ln 21.综上所述,Sn4.已知数列an满足a11,a22,an2,nN*.(1)令bnan1an,证明:bn是等比数列;(2)求an的通项公式(1)证明b1a2a11.当n2时,bnan1anan(anan1)bn1,bn是以1为首项,为公比的等比数列(2)解由(1)知bnan1ann1,当n2时,ana1(a2a1)(a3a2)(anan1)11n211n1.当n1时,111a1,ann1(nN*)5.设数列an的前n项和为Sn.已知a1a(a3),an1Sn3n,nN*.(1)设bnSn3n,求数列bn的通项公式;(2)若an1an,nN*,求a的取值范围解(1)依题意,Sn1Snan1Sn3n,即Sn12Sn3n,由此得Sn13n12(Sn3n),又S131a3(a3),故数列Sn3n是首项为a3,公比为2的等比数列,因此,所求通项公式为bnSn3n(a3)2n1,nN*.(2)由(1)知Sn3n(a3)2n1,nN*,于是,当n2时,anSnSn13n(a3)2n13n1(a3)2n223n1(a3)2n2,当n1时,a1a不适合上式,故anan1an43n1(a3)2n22n2,当n2时,an1an12n2a30a9.又a2a13a1.综上,所求的a的取值范围是9,)(二)数列综合问题 (数列与函数、不等式等知识的综合问题)6.在数列an中,a1,an2(n2,nN*),数列bn满足bn(nN*)(1)求证:数列bn是等差数列;(2)求数列an中的最大项和最小项,并说明理由(1)证明an2(n2,nN*),bn.n2时,bnbn11.又b1.数列bn是以为首项,1为公差的等差数列(2)解由(1)知,bnn,则an11,设函数f(x)1,易知f(x)在区间和内均为减函数结合函数f(x)的图象可得,当n3时,an取得最小值1;当n4时,an取得最大值3.7将数列an中的所有项按每一行比上一行多两项的规则排成如下数表:a1a2a3a4a5a6a7a8a9已知表中的第一列数a1,a2,a5,构成一个等差数列,记为bn,且b24,b510.表中每一行正中间一个数a1,a3,a7,构成数列cn,其前n项和为Sn.(1)求数列bn的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a131.求Sn;记Mn|(n1)cn,nN*,若集合M的元素个数为3,求实数的取值范围解(1)设等差数列bn的公差为d,则解得所以bn2n.(2)设每一行组成的等比数列的公比为q.由于前n行共有135(2n1)n2个数,且321342,a10b48,所以a13a10q38q3,又a131,所以解得q.由已知可得cnbnqn1,因此cn2nn1.所以Snc1c2c3cn,Sn,因此Sn44,解得Sn8.由知cn,不等式(n1)cn,可化为.设f(n),计算得f(1)4,f(2)f(3)6,f(4)5,f(5).因为f(n1)f(n),所以当n3时,f(n1)bn对任意nN*恒成立,求实数a的取值范围解(1)因为aSnSn1(n2),所以aSn1Sn2(n3),两式相减得aaSnSn2anan1,所以anan11(n3)又aS2S1,且a11,得aa220,由a20,得a22,所以anan11(n2)所以ann.(2)法一bn(1n)2a(1n)n2(a2)n1a,令g(t)t2(a2)t1a,当1时,g(t)在2,)上为增函数,且g(1)g(2),所以b1b2b31.法二令bn1bn2n1a20,所以a12n,对任意nN*恒成立,所以a1.故实数a的取值范围是(1,)9.已知数列an满足a11,an12an1(nN*)(1)求数列an的通项公式;(2)证明:(nN*)解:(1)an12an1(nN*),an112(an1),an1是以a112为首项,2为公比的等比数列an12n.即an2n1(nN*)(2)证明:,k1,2,n,(nN*)10 已知函数f(x)axx2的最大值不大于,又当x时,f(x).(1)求a的值;(2)设0a1,an1f(an),nN*,证明:an.(1)解由题意,知f(x)axx22.又f(x)max,所以f.所以a21.又当x时,f(x),所以即解得a1.又因为a21,所以a1.(2)证明用数学归纳法证明:当n1时,0a1,显然结论成立因为当x时,0f(x),所以0a2f(a1).故n2时,原不等式也成立假设当nk(k2,kN*)时,不等式0ak成立因为f(x)axx2的对称轴为直线x,所以当x时,f(x)为增函数所以由0ak,得0f(ak)f.于是,0ak1f(ak).所以当nk1时,原不等式也成立根据,知对任何nN*,不等式an成立11设数列an的前n项和Sn满足Sn1a2Sna1,其中a20.(1)求证:an是首项为1的等比数列;(2)若a21,求证:Sn(a1an),并给出等号成立的充要条件证明(1)由S2a2S1a1,得a1a2a2a1a1,即a2a2a1.因a20,故a11,得a2,又由题设条件知Sn2a2Sn1a1,Sn1a2Sna1,两式相减得Sn2Sn1a2(Sn1Sn),即an2a2an1,由a20,知an10,因此a2.综上,a2对所有nN*成立从而an是首项为1,公比为a2的等比数列(2)当n1或2时,显然Sn(a1an),等号成立设n3,a21且a20,由(1)知,a11,ana,所以要证的不等式化为:1a2aa(1a)(n3),即证:1a2aa(1a)(n2),当a21时,上面不等式的等号成立当1a21时,a1与a1,(r1,2,n1)同为负;当a21时,a1与a1,(r1,2,n1)同为正;因此当a21且a21时,总有(a1)(a1)0,即aa1a,(r1,2,n1)上面不等式对r从1到n1求和得2(a2aa)(n1)(1a)由此得1a2aa(1a)综上,当a21且a20时,有Sn(a1an),当且仅当n1,2或a21时等号成立.12如下图,已知点的横坐标为。从曲线C:上的点作直线平行于x轴,交直线l:于点,再从点作直线平行于y轴,交曲线C于点,点的横坐标构成数列。(1)求数列的通项公式;(2)当,时,证明;(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌推广与品牌宣传
- 如何在学习中培养孩子的责任心
- 宴会厅用餐场地布局规划
- 低压电器设备质量评估报告
- 物业安全检查合格通知
- 医院工作人员个人工作总结范文(二)
- 一般风系统水系统安装施工组织设计与对策
- 离婚协议书:女方抚养子女及共同财产分割协议
- 男方自愿离婚及共同财产分割协议书范本
- 机场贵宾厅服务员聘用合同及礼仪培训协议
- SYT 6680-2021 石油天然气钻采设备 钻机和修井机出厂验收规范-PDF解密
- 《遗传学》课程标准
- 蛋白质分离纯化及鉴定
- 2024年化粪池清理合同协议书范本
- 实用美术基础中职全套教学课件
- 债权债务法律知识讲座
- 南京财经大学《812西方经济学(宏观经济学、微观经济学)》历年考研真题及详解
- 基于教育培训行业的客户关系营销研究
- 肉制品工艺学-香肠类制品-课件
- 超全QC管理流程图
- 2广告实务课程标准
评论
0/150
提交评论