人工智能英文版论文 关于人工智能的论文_第1页
人工智能英文版论文 关于人工智能的论文_第2页
人工智能英文版论文 关于人工智能的论文_第3页
人工智能英文版论文 关于人工智能的论文_第4页
人工智能英文版论文 关于人工智能的论文_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人工智能英文版论文 关于人工智能的论文 人工智能(AI)系统被认为是神经网络,可以识别图片,翻译,甚至精通古老的游戏。以下是精心的人工智能英文版论文的相关资料,希望对你有帮助! Googles AI Reasons Its Way around the London Underground 谷歌人工智能推导出环绕 伦敦地铁系统的路线 DeepMind?s latest technique uses external memory to solve tasks that require logic and reasoninga step toward more humanlike AI 维和推理能力的任务 By Elizabeth Gibney, Nature magazine on October 14, xx 伊丽莎白.吉布尼xx年10月14日发表于自然杂志 深度思维最新技术使用了外部存储来解决需要逻辑思 Artificial-intelligence (AI) systems known as neural works can recognize images, translate languages and even master the ancient game of Go. But their limited ability to represent plex relationships between data or variables has prevented them from conquering tasks that require logic and reasoning. 人工智能(AI)系统被认为是神经网络,可以识别图片,翻译,甚至精通古老的游戏。但他们描绘数据或变量之间的复杂关系的能力有限,这妨碍了他们克服需要逻辑思维和推理能力的任务。 In a paper published in Nature on October 12, the Google-owned pany DeepMind in London reveals that it has taken a step towards overing this hurdle by creating a neural work with an external memory. The bination allows the neural work not only to learn, but to use memory to store and recall facts to make inferences like a conventional algorithm. This in turn enables it to tackle problems such as navigating the London Underground without any prior knowledge and solving logic puzzles. Though solving these problems would not be impressive for an algorithm programmed to do so, the hybrid system manages to aomplish this without any predefined rules. 在10月12日自然杂志中发表的一篇论文中,谷歌在伦敦的子公司深度思维展示了他们通过结合外部存储创造了一个神经网络,来进一步克服这些障碍。这种和外部存储的结合不仅允许神经网络学习,还可以通过存储器来存储和回忆事件,并以此来像正常情况那样做推断。这反过来能够让它解决难题,比如在没有任何经验的情况下操控伦敦地铁,比如解决逻辑谜题。尽管对于一个算法程序来说做到这点并不会令人印象深刻,但这个混合系统在没有任何先决条件的情况下做到了这点。 Although the approach is not entirely newDeepMind itself reported attempting a similar feat in a preprint in xx“the progress made in this paper is remarkable”, says Yoshua Bengio, a puter scientist at the University of Montreal in Canada. 虽然这个方法不是一个全新的技术深度思维自己就在xx年报告过他们尝试了一种相似的技术但“在论文中的这个进步是非凡的”, _蒙特利尔的计算机学家本吉奥.本希奥赞叹道。 MEMORY MAGIC 记忆魔法 A neural work learns by strengthening connections between virtual neuron-like units. Without a memory, such a work might need to see a specific London Undeground map thousands of times to learn the best way to navigate the tube. 神经网络通过加强虚拟神经元之间的联系来学习。如果没有存储器,这样一个网络可能需要看一副特定的伦敦地铁地图数千次来学习最佳路线。 DeepMinds new systemwhich they call a differentiable neural putercan make sense of a map it has never seen before. It first trains its neural work on randomly generated map-like structures (which could represent stations connected by lines, or other relationships), in the process learning how to store descriptions of these relationships in its external memory as well as answer questions about them. Confronted with a new map, the DeepMind system can write these new relationshipsconnections between Underground stations, in one example from the paperto memory, and recall it to plan a route. 深度思维的新系统他们称它为微分神经计算机可以理解它从未见过的地图。第一次训练神经网络是在随机生成的类似结构的地图上(被铁路线链接的车站,或者其他关系),在这个过程中学习如何将这些关系的描述存储在它的外部存储器并且回答问题。面对一个新的地图,深度思维的系统可以把这些新关系按照一个图纸上例子来连接各地铁站之间的关系写到存储器,并能够回忆这些关系然后计划路线。 DeepMind?s AI system used the same technique to tackle puzzles that require reasoning. After training on 20 different types of question-and-answer problems, it learnt to make aurate deductions. For example, the system deduced correctly that a ball is in a playground, having been informed that “John picked up the football” and “John is in the playground”. It got such problems right more than 96% of the time. The system performed better than ?recurrent neural works?, which also have a memory, but one that is in the fabric of the work itself, and so is less flexible than an external memory. 深度思维的人工智能系统使用同样的方法来处理需要推理能力的智力游戏。在通过20种不同类型的问答训练之后,它学会了做出准确的推论。例如,系统通过被告之“约翰抓着足球”和“约翰在操场上”准确的推断出一个球在操场上。答对问题的概率超过了96%。这个系统的效率比拥有一个内部存储器的周期神经网络更高,也更灵活。 Although the DeepMind technique has proven itself on only artificial problems, it could be applied to real-world tasks that involve making inferences from huge amounts of data. This could solve questions whose answers are not explicitly stated in the data set, says Alex Graves, a puter scientist at DeepMind and a co-author on the paper. For example, to determine whether two people lived in the same country at the same time, the system might collate facts from their respective Wikipedia pages. 虽然深度思维的技术已被证明只针对人工问题,但它能够被应用到需要通过海量数据来进行推断的真实世界的工作。这能够解决那些在数据中没有明确答案的问题。深度思维的计算机科学家,研究报告的合著者,亚历克斯格雷夫斯介绍说。例如,对于判断两人是否在同一时间住在同一个国家,系统可能会核对他们各自在维基百科上的事项。 Although the puzzles tackled by DeepMind?s AI are simple, Bengio sees the paper as a signal that neural works are advancing beyond mere pattern recognition to human-like tasks such as reasoning. “This extension is very important if we want to approach human-level AI.” 虽然对于深度思维的人工智能来说,智力游戏很简单,但本希奥认为该论文是一个信号,它表明神经网络正在跨越单纯的模式识别,成长到能够做人类才能做的任务,例如推理。“如果我们想实现像人一样的人工智能,这次突破是非常重要的。” This article is reproduced with permission and was first published on October 13, xx. The mid-21st century, as a result of climate warming, melting ice caps north and south poles, the Earth many cities have been submerged in a vast expanse of water in the. At this point, the human science and technology has reached a very high level of artificial intelligence is that human beings invented the robot to cope with the worst one of the natural environment of scientific and technological means. 观后感 Today finally put admire already a long time in the xx science fiction film finished, couldnt help exclaim 1 god is! I dont talk nonsense, plot is too touching! When David abandoned by mother, when he and machine teddy bear together, through the tough time, when he believed in fairy tales, Pinohio, the blue fairy can turn themselves into reality, so my mother would love him, when he from she fell into the ocean at the end of the world at that moment, when he saw the blue fairy, at the bottom of the sea constantly pray for her, this is two thousand. Two thousand years late

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论