




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章动态计量经济模型,1,PPT学习交流,第一节分布滞后模型第二节局部调整模型和适应预期模型第三节自回归模型的估计第四节阿尔蒙多项式分布滞后,2,PPT学习交流,第一节分布滞后模型,3,PPT学习交流,4,PPT学习交流,如果Y依赖于X的无限期滞后,则模型称为无限分布滞后模型;如果Y依赖于X的有限期滞后,则模型称为有限分布滞后模型。,5,PPT学习交流,而Yt=+Yt-1+ut,t=1,2,n本例中Y的现期值与它自身的一期滞后值相联系,即依赖于它的过去值。一般情况可能是:Yt=f(Yt-1,Yt-2,X2t,X3t,)即Y的现期值依赖于它自身若干期的滞后值,还依赖于其它解释变量。在本例中,滞后的因变量(内生变量)作为解释变量出现在方程的右端。这种包含了内生变量滞后项的模型称为自回归模型。,6,PPT学习交流,一、考伊克分布滞后模型考伊克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即:Yt=+Xt+Xt-1+2Xt-2+ut(5.3)其中01这实际上是假设无限滞后分布,由于01,X的逐次滞后值对Y的影响是逐渐递减的。,7,PPT学习交流,(2)式中仅有三个参数:、和。但直接估计(2)式是不可能的。这是因为,首先,估计无限多个系数是不可行的。其次,从回归结果中不可能推出和的估计值。,8,PPT学习交流,估计考伊克模型的方法幸运的是,我们有同时解决上述两方面问题的方法。它们是:考伊克变换法非线性最小二乘法,9,PPT学习交流,10,PPT学习交流,11,PPT学习交流,可是,考伊克变换后模型的扰动项为ut-ut-1,这带来了自相关问题(这种扰动项称为一阶移动平均扰动项),并且,解释变量中包含了Yt-1,它是一个随机变量,部分地由ut-1决定,因而与(7)式中复合扰动项的一个分量-ut-1相关,从而使得高斯马尔柯夫定理的第4个条件不成立。此问题的存在使得OLS估计量是一个有偏和不一致估计量。,12,PPT学习交流,二、非线性最小二乘法非线性最小二乘法实际上是一种格点搜索法。首先定义的范围(如0-1),指定一个步长(如0.01),然后每次增加一个步长,依次考虑0.01,0.02,0.99。步长越小,结果精确度越高,当然计算的时间也越长。由于目前计算机速度已不是个问题,你可以很容易达到你所要求的精度。,13,PPT学习交流,(1)对于的每个值,计算Zt=Xt+Xt-1+2Xt-2+PXt-P(5.8),P的选择准则是,P充分小,使得X的P阶以后滞后值对Z无显著影响。,(2)然后回归下面的方程:Yt=+Zt+ut(5.9),(3)对的所有取值重复执行上述步骤,选择回归(5.8)式时产生最高的R2的值,则与此值相对应的和的估计值即为该回归所得到的估计值。,非线性最小二乘法步骤,14,PPT学习交流,有两个著名的动态经济模型,它们最终可化成与上一节(5.2)式相同的几何分布滞后形式,因此都是考伊克类型的模型。它们是:局部调整模型(Partialadjustmentmodel)适应预期模型(Adaptiveexpectationsmodel),第二节局部调整模型和适应预期模型,15,PPT学习交流,一、局部调整模型在局部调整模型中,假设行为方程决定的是因变量的理想值(desiredvalue)或目标值Yt*,而不是其实际值Yt:Yt*=+Xt+ut(5.10)由于Yt*不能直接观测,因而采用“局部调整假说”来确定,即假定因变量的实际变动(YtYt-1),与其理想值和前期值之间的差异(Yt*Yt-1)成正比:YtYt-1=(Yt*-Yt-1)(5.11)01,称为调整系数。,16,PPT学习交流,从(5.12)式可看出,Yt是现期理想值和前期实际值的加权平均。的值越高,调整过程越快。如果=1,则Yt=Yt*,在一期内实现全调整。若=0,则根本不作调整。,(5.11)式可改写为:Yt=Yt*+(1-)Yt-1(5.12),17,PPT学习交流,将式(5.10)代入(5.12),得到Yt=+Xt+(1-)Yt-1+ut(5.13)用此模型可估计出、和的值。,与考伊克模型类似,这里也存在解释变量为随机变量的问题(Yt-1)。区别是考伊克模型中,Yt-1与扰动项(ut-ut-1)同期相关,而部局部调整模型不存在同期相关。在这种情况下,用OLS法估计,得到的参数估计量是一个一致的估计量。,18,PPT学习交流,不难看出,(5.13)式Yt=+Xt+(1-)Yt-1+ut与变换后的考伊克模型的形式相似,我们也不难通过对(5.13)式中Yt-1进行一系列的置换化为几何分布滞后的形式。,19,PPT学习交流,表5.11995-2014年全社会固定资产投资与GDP数据单位:亿元我们尝试利用局部调整假定估计模型参数,估计分布滞后模型。,例1,20,PPT学习交流,21,PPT学习交流,22,PPT学习交流,23,PPT学习交流,二、适应预期模型预期(expectation)的构模往往是应用经济学家最重要和最困难的任务,在宏观经济学中更是如此。投资,储蓄等都是对有关未来的预期很敏感的。例如,如果存在很可观的失业,则政府支出增加被认为是有益的,并将刺激投资。另一方面,如果经济正接近充分就业,则政府的扩张政策被认为将导致通货膨胀,结果是工商界的信心受挫,投资下降。,24,PPT学习交流,25,PPT学习交流,上式表明,X的预期值是其当前实际值和先前预期值的加权平均。的值越大,预期值向X的实际发生值调整的速度越快。,(5.15)说明适应预期过程是一种简单的学习过程,其机制是,在每一时期中,将所涉及变量的当前观测值与以前所预期的值相比较,如果实际观测值大,则将预期值向上调整,如果实际观测值小,则预期值向下调整。调整的幅度是其预测误差的一个分数,即:,(5.15)式可写成,(01)(5.16),26,PPT学习交流,适应预期和局部调整之间当然有很多明显的类似之处,可是从适应预期模型的最初形式导出仅包含可观测变量的模型(可操作模型)不象在部分调整模型的情况那么简单。假如你认为因变量Yt与某个解释变量X的预期值Xte有关,则可写出模型,27,PPT学习交流,若假定Xte用适应预期机制确定,这就是一个适应预期模型,其中解释变量Xte是不可观测的,必须用可观测变量取代之。我们用“降阶”法来解决这个问题。如果(5.16)式成立,则对于t-1期,它也成立,即:,28,PPT学习交流,将(5.17)式代入(5.16)式,得,将(5.19)式代入(5.14)式,得,我们可以用类似的方法,消掉(5.18)式中的,这一过程可无限重复下去,最后得到:,29,PPT学习交流,不难看出,此式与上节中考伊克分布(5.3)的形式相同。该模型的参数可用上一节介绍的非线性方法估计。对(5.20)式施加考伊克变换,将简化模型的数学形式,但由于与考伊克模型同样的理由,不宜直接用OLS法估计。施加考伊克变换的适应预期模型为:(5.21),30,PPT学习交流,31,PPT学习交流,我们仍然采用例1的数据,在适应预期假定下估计结果如下,32,PPT学习交流,33,PPT学习交流,上两节中,我们讨论了下列三个模型:考伊克模型,适应预期模型,局部调整模型,第三节自回归模型的估计,34,PPT学习交流,这种解释变量中包括因变量的滞后值的模型称为自回归模型。由于在解释变量中包含了因变量的滞后值,我们就可以动态地考察该变量在若干周期中的变动,因此称为动态模型。,在自回归模型中,由于随机解释变量的存在和序列相关的可能性这双重原因,OLS法不能直接应用,因此我们必须研究这类模型的估计问题。,这三个模型具有一种共同的形式,即:,35,PPT学习交流,一、自回归模型的估计问题OLS法的应用,要求解释变量Xt为非随机的。在自回归模型中,由于Yt-1作为解释变量,这一条件已无法满足,这是因为,由于因此:这表明,Yt-1是随着随机扰动项Vt-1的变动而变动的,即Yt-1部分地由Vt-1决定,因而Yt-1是随机变量。,36,PPT学习交流,1.解释变量为随机变量时OLS估计量的统计性质可以证明,当X为非随机变量这一条不满足时(1)若每一个Xt都独立于所有的扰动项ut,即cov(Xs,ut)=0,s=1,2,nt=1,2,n则OLS估计量仍为无偏估计量。(2)若解释变量Xt独立于相应的扰动因素ut,即随机解释变量与扰动项同期无关:Cov(Xt,ut)=0,t=1,2,n则OLS估计量为一致估计量。(3)若上述两条均不满足,则OLS估计量既是有偏的,又是不一致的。,37,PPT学习交流,2.自回归模型的估计问题在自回归模型的情况下,第(1)条已无法满足,因为Yt-1显然可以表示为Vt-1,Vt-2,V1等的函数,因而依赖于Vt-1和所有早期的扰动因子。现在让我们来看是否有可能满足解释变量与扰动项同期无关的条件,从而得到一个一致的估计量。,38,PPT学习交流,在自回归模型的情况下:也就是要求Yt-1独立于Vt,或Cov(Yt-1,Vt)=0不难看出,只要扰动项Vt是序列独立的(即自回归模型的各期扰动项相互独立),我们就可以假定Yt-1独立于所有未来的扰动因子(包括Vt),在这种假定下,Yt-1与Vt无关,我们对上式应用OLS得到的参数估计量是一致估计量。,39,PPT学习交流,第五节阿尔蒙多项式分布滞后(AlmonPolynomialDistributedLags),考伊克分布假定滞后解释变量的系数按几何级数递减。对于很多应用问题来说,这是一种令人满意的近似,但对于另一些应用问题,这种假设就未必符合现实情况。例如,在某些情况下较现实的假设是,因变量对解释变量变动的响应是,开始小,然后随时间变大,尔后再次衰减,如下图所示,40,PPT学习交流,阿尔蒙滞后分布为这类行为的构模提供了灵活的选择,同时使待估计的参数数目大大减少。,41,PPT学习交流,基本假设是,如果Y依赖于X的现期值和若干期滞后值,则权数由一个多项式分布给出。由于这个原因,阿尔蒙滞后也称为多项式分布滞后。最简单的例子是二次和三次多项式的情况。,阿尔蒙滞后分布的基本假设,42,PPT学习交流,一般情况下,在分布滞后模型,其中p为多项式的阶数,如图2中p=2,图3中p=3。也就是用一个p阶多项式来拟合分布滞后,该多项式曲线通过滞后分布的所有点。由用户选择最大滞后周期m和多项式阶数p。,中,假定:,43,PPT学习交流,44,PPT学习交流,45,PPT学习交流,46,PPT学习交流,在实践中,人们期望m尽量小一些,如果有10年的数据,通常滞后取二至三期。对于P,我们可直接由(2)式用t检验法检验H0:aP=0,如果接受原假设,我们就可以去掉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省日照市莒县2024-2025学年八年级(下)期末物理试卷(含答案)
- 河南省新乡市新乡县2024-2025学年四年级下学期6月期末数学试题(含答案)
- 北京市海淀区2024-2025学年高一下学期期末物理试卷(含答案)
- 新零售业态研究
- 绿色消费趋势及对市场影响的分析
- 氢能产业园氢气市场需求与供应链管理
- 供水管网数据统计与分析技术方案
- 胎盘早剥汉中马晖12课件
- 物流公司财务管理方案
- 水电站监控课件
- 2025年秋季新学期全体中层干部会议校长讲话:在挑战中谋突破于坚实处启新篇
- 2025年幼儿园保育员考试试题(附答案)
- 【《惠东农商银行个人信贷业务发展现状及存在的问题和策略分析》15000字】
- 2025中国医师节宣传教育课件
- 高中数学选修一(人教A版2019)课后习题答案解析
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- GB/T 4745-2012纺织品防水性能的检测和评价沾水法
- 工作桌面pad相关gec3000通讯协议v2
- 正压式呼吸器使用与管理规范
- GB∕T 37004-2018 国家物品编码通用导则
评论
0/150
提交评论