




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第4节,一、平面及其方程,二、直线及其方程,三、两直线及两平面的夹角,平面与直线,第七章,1,一、平面的点法式方程,设一平面通过已知点,且垂直于非零向,称式为平面的点法式方程,求该平面的方程.,法向量.,量,则有,故,2,例1.求过三点,即,解:取该平面的法向量为,的平面的方程.,利用点法式得平面的方程,3,此平面的三点式方程也可写成,一般情况:,过三点,的平面方程为,说明:,4,特别,当平面与三坐标轴的交点分别为,此式称为平面的截距式方程.,时,平面方程为,分析:利用三点式,按第一行展开得,即,5,二、平面的一般方程,设有三元一次方程,以上两式相减,得平面的点法式方程,此方程称为平面的一般,任取一组满足上述方程的数,则,显然方程与此点法式方程等价,的平面,因此方程的图形是,法向量为,方程.,6,特殊情形,当D=0时,Ax+By+Cz=0表示,通过原点的平面;,当A=0时,By+Cz+D=0的法向量,平面平行于x轴;,Ax+Cz+D=0表示,Ax+By+D=0表示,Cz+D=0表示,Ax+D=0表示,By+D=0表示,平行于y轴的平面;,平行于z轴的平面;,平行于xOy面的平面;,平行于yOz面的平面;,平行于zOx面的平面.,7,例2.求通过x轴和点(4,3,1)的平面方程.,例3.用平面的一般式方程导出平面的截距式方程.,解:,因平面通过x轴,设所求平面方程为,代入已知点,得,化简,得所求平面方程,8,三、两平面的夹角,设平面1的法向量为,平面2的法向量为,则两平面夹角的余弦为,即,两平面法向量的夹角(常指锐角)称为两平面的夹角.,9,特别有下列结论:,10,因此有,例4.一平面通过两点,垂直于平面:x+y+z=0,求其方程.,解:设所求平面的法向量为,即,的法向量,约去C,得,即,和,则所求平面,故,方程为,且,11,外一点,求,例5.设,解:设平面法向量为,在平面上取一点,是平面,到平面的距离d.,则P0到平面的距离为,(点到平面的距离公式),12,例6.,解:设球心为,求内切于平面x+y+z=1与三个坐标面所构成,则它位于第一卦限,且,因此所求球面方程为,四面体的球面方程.,故,13,内容小结,1.平面基本方程:,一般式,点法式,截距式,三点式,14,2.平面与平面之间的关系,平面,平面,垂直:,平行:,夹角公式:,15,备用题,求过点,且垂直于二平面,和,的平面方程.,解:已知二平面的法向量为,取所求平面的法向量,则所求平面方程为,化简得,16,三空间直线方程,空间直线的一般方程空间直线方程通常用两个平面的交线来刻画:,17,18,空间直线的点向式方程与参数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家居软装合同范本
- 土地堂房出售合同范本
- 夜市合作合同范本
- 测绘分包合同范本
- 客服文员制定合同范本
- 与朋友合作合同范本
- 2025嘉兴市秀洲区事业单位面向普通高校毕业生退役士兵招聘2人-统考考试参考试题及答案解析
- 2025年山东泰然建设发展有限公司公开招聘工作人员考试参考试题及答案解析
- 2025年合肥肥东县宝翠园小学招聘教师考试参考试题及答案解析
- 供水检漏服务合同范本
- 2025年临床医师定期考核必考复习题库及答案(900题)
- 桥梁检测评定与加固技术(第2版) 课件 第6章 桥梁检查与评定
- 兼职健身教练合作协议3篇
- 粮食安全政策
- UL2034标准中文版-2017一氧化碳报警器UL中文版标准
- 【MOOC】认识飞行-上海工程技术大学 中国大学慕课MOOC答案
- 国际商务谈判 习题答案、练习题及答案(白远)
- 关节活动维持与改善技术
- 幼儿园饮用水突发污染事故应急处理预案
- 政治-中国特色社会主义教材探究与分享参考答案高中政治统编版必修一
- 湖南省长沙市师大附中博才实验中学2024-2025学年九年级上学期开学考试语文试题
评论
0/150
提交评论