




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1椭圆及其标准方程,如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?,生活中的椭圆,仙女座星系,星系中的椭圆,“传说中的”飞碟,动画演示:太阳系行星的运动,思考,数学实验,(1)取一条细绳,(2)把它的两端固定在板上的两个定点F1、F2(3)用铅笔尖(M)把细绳拉紧,在板上慢慢移动看看画出的图形,1.在椭圆形成的过程中,细绳的两端的位置是固定的还是运动的?2.在画椭圆的过程中,绳子的长度变了没有?说明了什么?3.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?,请你归纳出椭圆的定义,它应该包含几个要素?,(1)由于绳长固定,所以点M到两个定点的距离和是个定值,(2)点M到两个定点的距离和要大于两个定点之间的距离,(一)椭圆的定义,平面内到两个定点F1,F2的距离之和等于常数(2a)(大于|F1F2|)的点的轨迹叫椭圆。定点F1、F2叫做椭圆的焦点。两焦点之间的距离叫做焦距(2C)。,椭圆定义的文字表述:,椭圆定义的符号表述:,(2a2c),M,F2,F1,小结:椭圆的定义需要注意以下几点,1.平面上-这是大前提2.动点M到两定点F1,F2的距离之和是常数2a3.常数2a要大于焦距2C,思考:,1.当2a2c时,轨迹是(),椭圆,2.当2a=2c时,轨迹是一条线段,是以F1、F2为端点的线段3.当2a0),M与F1和F2的距离的和等于正常数2a(2a2c),则F1、F2的坐标分别是(c,0)、(c,0).,(问题:下面怎样化简?),由椭圆的定义得,限制条件:,代入坐标,2.椭圆的标准方程的推导,两边除以得,由椭圆定义可知,总体印象:对称、简洁,“像”直线方程的截距式,焦点在y轴:,焦点在x轴:,椭圆的标准方程,图形,方程,焦点,F(c,0),F(0,c),a,b,c之间的关系,c2=a2-b2,MF1+MF2=2a(2a2c0),定义,两类标准方程的对照表,注:,共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.,不同点:焦点在x轴的椭圆项分母较大.焦点在y轴的椭圆项分母较大.,练习1:判定下列椭圆的焦点在哪个轴,并指明a2、b2,写出焦点坐标,答:在X轴(-3,0)和(3,0),答:在y轴(0,-5)和(0,5),答:在y轴。(0,-1)和(0,1),判断椭圆标准方程的焦点在哪个轴上的准则:焦点在分母大的那个轴上。,1.口答:下列方程哪些表示椭圆?,若是,则判定其焦点在何轴?并指明,写出焦点坐标.,?,练习:,0b3,练习:1.方程4x2+ky2=1的曲线是焦点在y轴上的椭圆,则k的范围是.2.椭圆mx2+ny2=-mn(mn|F1F2|=4,故点M的轨迹为椭圆。,(2)因|MF1|+|MF2|=4=|F1F2|=4,故点M的轨迹不是椭圆(是线段F1F2)。,练习,例2已知圆A:(x3)2y2100,圆A内一定点B(3,0),圆P过B点且与圆A内切,求圆心P的轨迹方程,解:设PBr圆P与圆A内切,圆A的半径为10两圆的圆心距PA10r,即PAPB10(大于AB)点P的轨迹是以A、B两点为焦点的椭圆2a10,2cAB6,a5,c3b2a2c225916即点P的轨迹方程为1,4、三角形ABC的三边a、b、c成等差数列,A、C的坐标分别为(-1,0),(1,0),求顶点B的轨迹。,8.在ABC中,BC=24,AC、AB边上的中线之和为39
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年终止不定期劳动合同的规定与操作流程
- 项目立项案例题目及答案
- 叉车考试科目一的题目及答案
- 物体打击试题及答案
- 2024译林版八年级英语上册Unit 1 课时4 Grammar 分层作业(含答案)
- 营销策划岗位知识培训课件
- 2025年高考化学试题分类汇编:化学实验基础(解析版)
- 物流考试试题及答案2025
- 2025型钢租赁合同
- 物流的试题及答案
- T/CCS 063-2023井工煤矿智能化供排水系统运维管理规范
- DB36-T1694-2022-餐厨垃圾集约化养殖黑水虻技术规程-江西省
- 超市卫生管理规范培训
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
- 中学生心理辅导活动课教案(合集)
- 《心律失常的诊断和治疗》课件
- 委托运营合作合同协议
- 违章作业培训课件
- 软件行业薪酬管理制度
- 门急诊管理制度
- 2025年中级消防设施操作员(维保)模拟试题题库(附答案)
评论
0/150
提交评论