




免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探究中点四边形,课题:,1.掌握中点四边形的概念。2.利用三角形中位线定理推导任意四边形的中点四边形是平行四边形,从中找到原四边形的对角线对中点四边形形状的决定性作用。3.理解并掌握中点四边形的形状与原四边形的对角线之间的关系。4.利用探索结果掌握特殊四边形的中点四边形的形状。,学习目标:,一组邻边相等,有一个内角是直角,一组邻边相等,有一个内角是直角,对角线相等,对角线相等,对角线垂直,对角线垂直,四边形之间的关系,三角形的性质,定理:三角形的中位线平行于第三边,且等于第三边的一半.,这个定理提供了证明线段平行以及线段成倍分关系的根据.,DE是ABC的中位线,DEBC,中位线,E,F,G,H,中点四边形的定义,顺次连接四边形各边中点所得的四边形叫做中点四边形。,A,B,C,D,探究一:凸四边形的中点四边形,顺次连接任意四边形各边中点所成的四边形是什么形?,观察猜想并证明,已知:如图,点E、F、G、H分别是四边形ABCD各边中点。,求证:四边形EFGH为平行四边形。,证明:连接ACE、F是AB、BC边中点EFAC且EFAC同理:HGAC且HGACEFHG且EFHG四边形EFGH为平行四边形。,E,F,G,H,请同学们:看一看、猜一猜并证一证,A,B,C,D,(一组对边平行且相等的四边形是平行四边形),顺次连接各边中点所成的四边形,任意四边形,平行四边形,是平行四边形。,也是平行四边形吗?,A,B,C,H,E,D,G,F,那么:,矩形呢?,有没有更特殊?,B,D,c,E,H,G,F,A,其它各种四边形的中点四边形边是何种四边形呢?先观察并猜一猜,再证明.,菱形,矩形,正方形,AC=BD,AC=BD,小组合作探究:,任意四边形的中点四边形都是_;平行四边形的中点四边形是_;矩形的中点四边形是_;菱形的中点四边形是_;正方形的中点四边形是_;对角线相等的四边形的中点四边形是_;对角线垂直的四边形的中点四边形是_;对角线垂直且相等的四边形的中点四边形是_,平行四边形,平行四边形,矩形,菱形,菱形,正方形,矩形,正方形,思考:结合刚才的证明过程,小组讨论凸四边形的中点四边形的形状与原四边形的什么有着密切的关系?,结论:,(1)凸四边形中点四边形的形状与原四边形的有密切关系;(2)只要原四边形的两条对角线,就能使中点四边形是菱形;(3)只要原四边形的两条对角线,就能使中点四边形是矩形;(4)要使中点四边形是正方形,原四边形要符合的条件是。,对角线,相等,互相垂直,相等且互相垂直,矩,菱,(3)那么四边形:()形,面积是多少?,中点四边形的面积与原四边形的面积之比为多少?,如图:点E、F、G、H分别是线段AB、BC、CD、AD的中点,则四边形EFGH是什么图形?并说明理由。,大显身手,探究二:凹四边形或折四边形的中点四边形,思考:结合刚才的证明过程,小组讨论凹四边形或折四边形的中点四边形的形状与原四边形的对角线的关系是否仍然成立?,超越自我:凹四边形ABCD,E.F.G.H分别为AB.BC.CD.DA边中点,问:四边形EFGH的形状?,变式:点O是ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,如果DEFG能构成四边形:(1)如图,当O点在ABC内部时,证明四边形DEFG是平行四边形;,(2)当O点移动到ABC外部时,(1)的结论是否还成立?说明理由;,图,(3)若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 摆摊如何签就业合同协议
- 断供房屋合同解除协议书
- 施工合同无效抵顶协议书
- 杭州旧摩托买卖协议合同
- 棋牌俱乐部转让合同范本
- 民宿合同解除协议书模板
- 2025年医疗手术终结协议书
- 2025年广州租赁学位协议书
- 租借池塘合同协议书范本
- 租用空气净化器合同范本
- 房地产市场报告 -九江房地产市场月报2022年11月
- 代运营协议合同范本
- 《人格障碍》课件
- 座位表模板(空白)
- 部编版高一语文必修上册教学计划
- 青岛版六三制四年级上册数学1万以上数的认识和读法教学课件
- GB∕T 27011-2019 合格评定 认可机构要求
- 私企接待应酬管理制度(3篇)
- YX51-380-760型金属屋面板专项施工方案(32页)
- 国际商务(International Business)英文全套完整课件
- 编制说明—《殡仪服务规范》
评论
0/150
提交评论