有限元法基础-12动力学问题_第1页
有限元法基础-12动力学问题_第2页
有限元法基础-12动力学问题_第3页
有限元法基础-12动力学问题_第4页
有限元法基础-12动力学问题_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,第十二章动力学问题,12.1动力学问题的有限元方程12.2质量矩阵与阻尼矩阵12.3直接积分法12.4特征值问题及解法12.5振型叠加法12.6减缩系统自由度的方法,.,2,12.动力学问题,关键概念一致质量矩阵团聚质量矩阵振型阻尼矩阵Rayleigh阻尼显式积分隐式积分Guyan减缩法动力子结构法,有限元法基础,.,3,12.动力学问题,12.1动力学问题的有限元方程(一)动力学问题的基本方程平衡方程几何方程本构关系边界条件初始条件,有限元法基础,.,4,12.动力学问题,(二)Galerkin法平衡方程和力的边界条件的等效积分形式第一项分部积分,有限元法基础,.,5,12.动力学问题,(三)有限元离散在动力学分析时,物理量是空间(x,y,z)的函数,也是时间(t)的函数,是一个四维问题有限元离散,或网格剖分是对空间域进行,这一步骤与静力学问题分析时相同时间维的离散使用有限差分法处理,有限元法基础,.,6,12.动力学问题,(四)位移插值函数只对空间域进行离散,插值函数表示为写成矩阵形式,有限元法基础,插值函数与时间无关,.,7,12.动力学问题,(五)有限元方程将插值函数代入Galerkin积分表达式,由的任意性得,系统的求解方程其中,有限元法基础,.,8,12.动力学问题,(六)典型的动力学问题模态分析(ModalAnalysis)确定结构的动力学特征瞬态分析(TransientAnalysis)使用直接积分法或模态叠加法得到结构的瞬态响应谐分析(HarmonicAnalysis)线性结构承受简谐载荷的稳态响应谱分析(SpectrumAnalysis)在响应谱作用下,结构的响应,有限元法基础,.,9,12.动力学问题,12.2质量矩阵和阻尼矩阵动力问题的质量矩阵它与所使用的有限元列式的原理和位移插值函数保持一致。假定质量集中在节点上,导出的质量矩阵是对角线矩阵,可提高计算效率。,有限元法基础,一致质量矩阵ConsistentMass,团聚质量矩阵LumpedMass,.,10,12.动力学问题,团聚质量矩阵的计算方法(1)中每一行主元等于中该行所有元素之和(2)中每一行主元等于中该行主元乘以缩放因子a根据平动DOF质量守恒确定,即,有限元法基础,.,11,12.动力学问题,振型阻尼矩阵阻尼正比于质点速度阻尼正比于应变速度这种阻尼称为比例阻尼或振型阻尼,比例系数与固有频率相关。和与频率无关,为常数。,有限元法基础,阻尼矩阵与质量矩阵或刚度矩阵成比例,Rayleigh阻尼,.,12,12.动力学问题,12.3直接积分法半离散的动力学方程的解法分为两类,一是直接进行数值积分,一类是使用固有振型表达动态响应,称为振型叠加法。直接时间积分一般采用差分格式,分为显式时间和隐式时间积分。显式积分式条件稳定的,隐式积分是无条件稳定的,各有优缺点。,有限元法基础,.,13,12.动力学问题,12.3.1中心差分法有限差分法的理论依据很简单,以有限增量的比值代替数学上的微分,速度表示为中心差分格式为,有限元法基础,.,14,12.动力学问题,将中心差分格式应用到有限元的半离散方程整理得递推公式,有限元法基础,.,15,12.动力学问题,中心差分法求解运动方程的步骤1.初始计算1)形成刚度矩阵K、质量矩阵M和阻尼矩阵C2)给定,和3)选择时间步长,4)计算5)形成有效质量矩阵6)三角分解,有限元法基础,.,16,12.动力学问题,2.对每一时间步长1)计算时间t的有效载荷2)求解时间的位移3)如果需要计算时间t的加速度和速度,有限元法基础,.,17,12.动力学问题,特点(1)若已知和可直接预测下一步的,称为逐步积分法。如果质量矩阵M是对角的,C也是对角或可以忽略,则利用递推公式求解时不需求解方程,直接可得下一时间步的预测值。,有限元法基础,显示时间积分(ExplicitTimeIntegral),.,18,12.动力学问题,(2)当t=0时,需要和,因此必须用专门的起步方法。由速度和加速度的中心差分公式,消去的量,得初始加速度可用运动方程求得,有限元法基础,.,19,12.动力学问题,(3)中心差分是条件稳定的,时间步长不能任意取,最大步长与计算的问题相关,以及网格剖分相关。一般步长可取为为系统的最高阶固有频率,Tn是系统的最小固有振动周期。实际应用中可以用系统中最小尺度单元的最小振动周期代替系统的Tn,因为。,有限元法基础,.,20,12.动力学问题,(4)时间步长的确定方式a)网格剖分后,找出尺寸最小的单元,形成单元的特征方程求出最大特征根,得到。b)网格剖分后,找出尺寸最小的单元的最小边长L,可以近似地估计,由此,得,称为Couran,Friedrich和Lewy条件。,有限元法基础,物理解释:时间步长应足够小,以致于在单个时间步内,传播不会超过相邻的两个节点间的距离。,.,21,12.动力学问题,(5)中心差分的显示算法,适合于由冲击、碰撞、爆炸类型的载荷引起的波传播问题的求解。因为这些问题本身就是在初始扰动后,按一定的波速C逐步在介质中传播。对于结构动力学问题,采用显示时间积分不太合适。因为结构的动力响应中低频成分起主要作用,允许大的时间步长。,有限元法基础,.,22,12.动力学问题,例:波的传播均匀钢杆,无阻尼,开始静止,突然施加轴向端点力。用40个2节点杆单元模拟,材料为线弹性。图中Cn为Courant数,即实际步长与临界步长的比值。,有限元法基础,.,23,12.动力学问题,有限元法基础,.,24,12.动力学问题,有限元法基础,初始速度为零,开始后在加载。,.,25,12.动力学问题,12.3.2Newmark法Newmark积分法假设,在的时间区域内,有其中,和是按积分精度、稳定性和算法阻尼要求决定的参数,取不同的值代表不同的积分方案。,有限元法基础,.,26,12.动力学问题,几个特例1),对应于线性加速度法,即在时间步加速度内线性变化2),对应于平均加速度法,即在时间步内加速度取平均值,有限元法基础,.,27,12.动力学问题,Newmark法的运动方程由Newmark关系式,得递推公式为,有限元法基础,.,28,12.动力学问题,Newmark法的计算步骤1.初始计算(1)形成刚度矩阵K,质量矩阵M和阻尼矩阵C(2)给定,和(3)选择时间步长,以及参数、和积分常数(4)形成有效刚度矩阵(5)三角分解,有限元法基础,.,29,12.动力学问题,2.对每一时间步长(1)计算时间的有效载荷(2)求解时间的位移(3)计算时间的加速度和速度,有限元法基础,.,30,12.动力学问题,Newmark法的特点(1)为隐式积分算法(ImplicitTimeIntegral)每一步都必须求解方程;(2)当时算法是无条件稳定的,即时间步长得大小不影响解得稳定性;(3)当时是条件稳定的,;(4)Newmark法特别适合于时程较长的系统数瞬态响应分析,而且大时间步长可以滤掉高阶不精确模态对系统响应的影响。,有限元法基础,.,31,12.动力学问题,有限元法基础,.,32,12.动力学问题,有限元法基础,.,33,12.动力学问题,12.4特征值问题及其解法系统的运动方程为无阻尼自由振动退化为设方程解的形式为方程成为,有限元法基础,广义特征值问题,.,34,12.动力学问题,四种类型的解法:直接矢量迭代法(幂法)矩阵变换法多项式迭代求解法(行列式搜索法)利用特征多项式的Sturm序列特性求解法以及,.,35,12.动力学问题,12.4.1逆迭代法(幂法)对方程取近似解按以下迭代格式求解则序列将收敛于相应的特征根的特征矢量。,.,36,12.动力学问题,因为对任一矢量可用特征矢量表示为代入方程按迭代方程有若,当时,,.,37,12.动力学问题,为了使Xi不受计算的影响,常常需要归一化正迭代法的计算方案迭代格式若,当时,特征根的近似解,.,38,12.动力学问题,12.4.2变换法广义特征值问题化为标准特征值问题有限元法中的质量矩阵M是对称正定的,则故有定义得到,.,39,12.动力学问题,标准特征值问题变换法中有Jacobi法、Givens法、Householder,其实质就是通过一系列的变换矩阵,将M变换成单位矩阵,将K变换成对角矩阵。Jacobi法标准特征值问题的方程设完成第k步变换成为Pk是正交矩阵,即,.,40,12.动力学问题,Pk矩阵的构造,.,41,12.动力学问题,特点在时,矩阵K趋于对角阵由于只能做有限次变换,因此最后的矩阵是对角占优变换后的矩阵总是对称的,可以减少计算次数在一次变换使非对角线为零元素,在下次变换中可能成为非零,因此收敛缓慢需要结合一些其他策略提高计算效率,.,42,12.动力学问题,12.4.3子空间迭代法子空间迭代法是求解大型特征值问题的低阶特征值有效方法,它实际上是Rayleigh-Ritz法和同时逆迭代法的组合。子空间迭代法的步骤1)建立q个初始矢量(qp,p是要计算的特征根个数,一般q=min(2p,p+8)2)从q个迭代矢量中使用逆迭代法和Ritz分析抽取近似的特征根和特征矢量3)迭代收敛后,使用Sturm序列检查验证所得特征根和特征矢量是否符合要求,.,43,12.动力学问题,子空间迭代法求解过程q个初始迭代矢量构成nq阶矩阵X1第k步迭代为形成子空间投影矩阵求解子空间特征系统这是RayleighRitz分析,Kk+1是qq计算近似特征矢量Xk+1可作为新的迭代矩阵,当时,,.,44,12.动力学问题,12.4.4Lanczos法Lanczos方法目前被认为是求解大型矩阵特征值问题的最有效方法,与子空间迭代法相比,其计算量要少得多。Lanczos变换选取初始矢量x,并计算,.,45,12.动力学问题,理论上讲,xi(i=1,2,n)是关于M正交的,即定义矩阵满足关系,.,46,12.动力学问题,经过Lanczos变换后矩阵成为三对角阵的证明,.,47,12.动力学问题,广义特征值方程的变形使用变换可得方程可见Tn特征根是广义特征根问题的倒数,.,48,12.动力学问题,由于截断误差Xi并不一定是正交为了计算效率,而且多数情况下,只需计算一部分低阶特征值,因此变换只需进行q(n)步,这就是截断的Lanczos变换这样Tq是原问题的子空间,类似于Rayleigh-Ritz法、子空间迭代法。,.,49,12.动力学问题,12.5振型叠加法(ModalSuperposition)(一)固有振型及性质对于无阻尼的自由振动问题的运动方程为设有求解方程,得n个固有频率和特征向量其中,有限元法基础,.,50,12.动力学问题,有限元法基础,根据求特征根的方程,有两式分别左乘和后相减,得当不为零时,有,固有振型关于M正交,.,51,12.动力学问题,有限元法基础,利用特征向量的正交性,可得定义则有,.,52,12.动力学问题,有限元法基础,(二)系统的动力响应1.位移基向量的变换以特征向量表示位移表达式的意义是将q(t)看成线性组合,而看成是广义的位移基向量,xi是广义位移值。代入系统的动力学方程,并利用的正交性质,得初始条件为,.,53,12.动力学问题,有限元法基础,设阻尼为振型阻尼,利用正交性质其中为的i阶振型阻尼比。这样方程解耦,成为,每一个方程相当于一个单自由度系统的振动方程,.,54,12.动力学问题,有限元法基础,特例1)设Q(t)可分解为空间函数和时间函数表示如果F(s)与正交,这表明系统中将不包含响应成分,也就是说Q(s,t)不能激起与F(s)正交的振型。2),.,55,12.动力学问题,有限元法基础,2)如果对作Fourier分析,可得到所包含的各个频率成分及幅值。根据其中应予考虑的最高阶频率可以确定进行积分的最高阶,例如选择。综合起来,通常在实际分析时,求解的单自由度方程数远低于系统的自由度数n。,.,56,12.动力学问题,有限元法基础,2.求解单自由度系统振动方程杜哈美积分时将任意激振力分解为为冲量的连续作用,分别求出个系统的响应,然后叠加起来,即ai和bi由初始条件确定。,一般杜哈美积分需数值积分计算,.,57,12.动力学问题,有限元法基础,3.振型叠加得到系统响应获得每个振型的响应后,将它们叠加起来,得到系统的响应,即a)b)c)振型迭代法不使用于非线性系统。,.,58,12.动力学问题,有限元法基础,3.振型叠加得到系统响应获得每个振型的响应后,将它们叠加起来,得到系统的响应,即在实际运用中,所取的振型数远小于n,能大大提高计算效率。,.,59,12.动力学问题,有限元法基础,特点a)振型叠加中使用n个单自由度方程求解,应与直接积分的结果一致;b)振型叠加法比直接积分法节省时间,尤其是在选取少量的单自由度方程的情况;c)振型迭代法不使用于非线性系统。,.,60,12.动力学问题,12.6减缩系统自由度的方法12.6.1Guyan减缩法Guyan减缩法又称为主从节点法。设节点位移列阵q,分为主自由度qm和从自由度qs两部分,并设ns和nm分别为qs和qm中的个数,有,有限元法基础,.,61,12.动力学问题,12.6减缩系统自由度的方法12.6.1Guyan减缩法Guyan减缩法又称为主从节点法。设节点位移列阵q,分为主自由度qm和从自由度qs两部分,并设ns和nm分别为qs和qm中的个数,有,有限元法基础,.,62,12.动力学问题,考虑无阻尼自由振动,方程代入关系式,并右乘,得,有限元法基础,系统方程从n降为nm,.,63,12.动力学问题,Guyan法以静力减缩的方式,导出为主自由度qm和从自由度qs关系式,即,有限元法基础,.,64,12.动力学问题,特点1)减缩后的方程,带宽会增加,只有采用较多的从自由度才能给计算带来明显的好处;2)主从自由度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论