




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(五)函数与导数1(2018浙江省台州中学模拟)设函数f(x)ax2bxc(a0),曲线yf(x)过点(0,2a3),且在点(1,f(1)处的切线垂直于y轴(1)用a分别表示b和c;(2)当bc取得最小值时,求函数g(x)f(x)ex的单调区间解(1)f(x)2axb,由题意得则b2a,c2a3.(2)由(1)得bc2a(2a3)42,故当a时,bc取得最小值,此时有b,c,从而f(x)x2x,f(x)x,g(x)f(x)exex,所以g(x)(x24)ex,令g(x)0,解得x12,x22.当x(,2)时,g(x)0,故g(x)在(2,2)上为增函数;当x(2,)时,g(x)0,对任意xR,k(kx)ekx恒成立,设g(x)ekxkxk2,g(x)kekxkk(1ekx),当x0时,g(x)0时,g(x)0,g(x)在(,0)上是减函数,在(0,)上是增函数,g(x)ming(0)1k20,又k0,0k1.方法二对任意xR,f(x)恒成立f(x)max,xR.f(x)kekx(kx)ekxekx(k2kx1),当k0,xk时,f(x)0;xk时,f(x)0,f(x)在上是减函数,在上是增函数又当x时,f(x),而0,与f(x)恒成立矛盾,k0,xk时,f(x)0;xk时,f(x)0,00,m(x)单调递增;当x(e,)时,m(x)0,m(x)单调递减m(x)有极大值,又x(0,1时,m(x)0;当x(1,)时,0m(x)1时,h(x)f(x)g(x)0恒成立,即ln xex2ax2ae0恒成立,令t(x)ln xex2ax2ae,t(x)ex2a,设(x)ex2a,(x)ex,x1,exe,0,(x)在(1,)上单调递增,即t(x)在(1,)上单调递增,t(x)t(1)1e2a,当a且a1时,t(x)0,t(x)ln xex2ax2ae在(1,)上单调递增,t(x)t(1)0成立,当a时,t(1)1e2a0,存在x0(1,ln 2a),满足t(x0)0.t(x)在(1,)上单调递增,当x(1,x0)时,t(x)0,t(x)单调递减,t(x0)0不恒成立实数a的取值范围为(,1).4已知函数f(x)x1aex.(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1x24.(1)解f(x)1aex,当a0时,f(x)0,则f(x)在R上单调递增当a0,得xln,则f(x)的单调递增区间为,令f(x)ln,则f(x)的单调递减区间为.(2)证明由f(x)0得a,设g(x),则g(x).由g(x)0,得x0,得x2.故g(x)ming(2)1时,g(x)0,当x0,不妨设x14等价于x24x1,4x12且g(x)在(2,)上单调递增,要证x1x24,只需证g(x2)g(4x1),g(x1)g(x2)a,只需证g(x1)g(4x1),即,即证(x13)x110;设h(x)e2x4(x3)x1,x(1,2),则h(x)e2x4(2x5)1,令m(x)h(x),则m(x)4e2x4(x2),x(1,2),m(x)h(2)0,h(x)在(1,2)上单调递增,h(x)h(2)0,x114得证5已知函数f(x),g(x)mx.(1)求函数f(x)的单调区间;(2)当a0时,f(x)g(x)恒成立,求实数m的取值范围;(3)当a1时,求证:当x1时,(x1)f(x)2.(1)解f(x)的定义域为(0,),且f(x).由f(x)0得1ln xa0,即ln x1a,解得0x0得0x2,等价于.令p(x),则p(x),令(x)xln x,则(x)1,x1,(x)0,(x)在(1,)上单调递增,(x)(1)10,p(x)0,p(x)在(1,)上单调递增,p(x)p(1)2,令h(x),则h(x),x1,1ex0,h(x)1时,h(x)h(x),即(x1)f(x)2,x1.6已知函数f(x)x3|ax3|2,a0.(1)求函数yf(x)的单调区间;(2)当a(0,5)时,对于任意x10,1,总存在x20,1,使得f(x1)f(x2)0,求实数a的值解(1)f(x)x3|ax3|2(a0)则f(x)当,即a3时,函数yf(x)的单调递减区间为,单调递增区间为,;当,即0a3时,函数yf(x)的单调递减区间为,单调递增区间为,.(2)由题意知,对于任意x10,1,总存在x20,1,使得f(x1)f(x2)0,等价于当x0,1时,f(x)minf(x)max0,由(1)得当3a5时,yf(x)在上单调递减,在上单调递增,所以f(x)minf2,f(x)maxmaxf(0),f(1)max1,a41,所以210,解得a3;当0a3时,yf(x)在上单调递减,在上单调递增,所以f(x)minf1,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客户礼品费管理制度
- 家乐福考勤管理制度
- 家居实训室管理制度
- 库房辅料库管理制度
- 引进种鸡苗管理制度
- 影视类项目管理制度
- 微商代理商管理制度
- 快易购销售管理制度
- 念佛堂值班管理制度
- 总公司安全管理制度
- 2025年全国统一高考语文试卷(全国一卷)含答案
- 四川体彩销售员考试试题及答案
- 厂区物业维修管理制度
- 泸州理综中考试题及答案
- 内镜室患者服务专员职责与流程
- 2025龙岩市上杭县蓝溪镇社区工作者考试真题
- 2025建设银行ai面试题目及最佳答案
- 养老院养老服务纠纷调解管理制度
- 潜水作业合同协议书
- 2025-2031年中国天然气勘探行业市场运行态势及投资潜力研判报告
- 北京开放大学2025年《装配式技术与应用》形成性考核2答案
评论
0/150
提交评论