极差法和贝塞尔公式的比较_第1页
极差法和贝塞尔公式的比较_第2页
极差法和贝塞尔公式的比较_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

标准不确定度的A类评定定义为:“用对观测列进行统计分析的方法,来评定标准不确定度”。国家计量技术规范JJF1059-1999测量不确定度评定与表示中介绍了两种A类评定的方法,贝塞尔法和极差法。1.贝塞尔法当在重复性或复现性条件下,对被测量X进行n次独立观测。若得到的测量结果分别为x1,x2,xn,n次测量的平均值为。于是用贝塞尔公式可以求出单次测量结果xi的实验方差s2(xi)和实验标准差s(xi)。2.极差法当在重复性或复现性条件下,对被测量X进行n次独立观测。若n个测量结果中最大值和最小值之差为R(称为极差),在可以估计X接近正态分布的条件下,单次测量结果的实验标准差s(xiv)可近似地表示为:s(xi)=R/C=u(xi)式中系数C为极差系数。极差系数之值与测量次数n的大小有关。表1给出极差法的极差系数和自由度与测量次数的关系。既然随机变量X的标准偏差可以用两种方法得到,就不可避免地会提出两种方法孰优孰劣的问题。无疑,极差法具有计算简单的优点。但在计算机应用已经十分普及的今天,用贝塞尔公式计算也已变得相当容易。因此关键问题还在于用何种方法估算得到的不确定度更为准确。表面上看来,用贝塞尔公式进行计算时使用了全部n个测量结果,而极差法只用了一个极大值和一个极小值,其余数据均弃之不用,因此用贝塞尔法得到的实验标准差应该比极差法更为可靠。比较两种方法的自由度也可以看出,极差法的自由度比贝塞尔法小(贝塞尔法的自由度为n-1,而极差法的自由度10时,贝塞尔法优于极差法;当n10时,极差法优于贝塞尔法。至于修正的贝塞尔公式,相比而言虽然最为准确,但因比较麻烦实际上很少使用。这就是为什么国家计量技术规范JJF1059-1999中在给出极差系数及自由度表后指出“一般在测量次数较小时采用该法”,以及国家计量技术法规统一宣贯教材测量不确定度评定与表示指南中同时还指出“测量次数以49次为宜”。上面的分析,仅是针对实验标准差而言的。在大部分的测量不确定度评定中,测量不确定度A类评定仅是其中的一个或几个分量。他们还将与其他B类评定的分量合成,才能得到合成标准不确定度。合成的方法是方差相加。虽然实验标准差s并不是标准偏差的无偏估计量,但却可以证明实验方差s2是总体方差2的无偏估计量。因此,若A类评定需要和其他B类分量合成,且A类评定分量不占优势时,则无论测量次数的多少,贝塞尔法将优于极差法。因此笔者认为结论应该是:(1)当A类评定不确定度分量不是合成标准不确定度中惟一占优势的分量时,则无论测量次数多少,贝塞尔法优于极差法。(2)当A类评定不确定度分量是合成标准不确定度中惟一占优势的分量时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论