立方根PPT课件_第1页
立方根PPT课件_第2页
立方根PPT课件_第3页
立方根PPT课件_第4页
立方根PPT课件_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PowerPointTemplate,第6章实数6.2立方根,劳动节即将来临,学生们纷纷向他们敬爱的老师表达心意,刘老师所任教的两个班的课代表一同前往老师办公室,他们手中捧着两个形状、大小一模一样的礼盒,并对老师说:“我代表我班的同学向老师敬礼,并以此小礼物代表我们对老师的敬意.”说完,两个课代表相视一笑,请老师猜一猜里面装的东西是否一样,里面物体的体积是否一样.老师知道,他们葫芦里肯定又要卖什么药,就郑重其事地说出两个盒子的大小虽然一样,但里面所装的物体的形状肯定不一样.虽然它们的体积相同,但一定有其他不同的地方.,一、创设情境,导入新课,刘老师打开纸盒一看,发现里面装的果然是两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方体形的,并且盒子里面各有一张纸条,内容为“经过测算,其体积为125cm3”.,一、创设情境,导入新课,同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?,你能求出球的半径和正方体的棱长吗?,球的半径与正方体的棱长,二、师生互动,课堂探究,(一)提出问题,引发讨论,23=;(-2)3=;0.53=;(-0.5)3=;;03=.,算一算:,8,-8,0.125,-0.125,0,我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数的数,这与平方运算不同,平方运算的底数互为相反数时,其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值,什么是立方根呢?,二、师生互动,课堂探究,(一)提出问题,引发讨论,二、师生互动,课堂探究,(一)提出问题,引发讨论,(-2)3=-8;(-0.5)3=-0.125;,负数有立方根,并且其立方根仍为负数.,类似平方根的定义可知,若x3=a,则x为a的立方根,记为a,读作三次根号a.负数没有平方根,负数有无立方根呢?,二、师生互动,课堂探究,(一)提出问题,引发讨论,2.开平方与平方互为逆运算,同样开立方与立方也互为逆运算.,8的立方根为,记为;-8的立方根为,记为.,请根据上述等式,写出这些互为相反数的数的立方根:,2,-2,二、师生互动,课堂探究,的立方根为,记为;的立方根为,记为;,0.125的立方根为,记为;-0.125的立方根为,记为;,请根据上述等式,写出这些互为相反数的数的立方根:,0.5,-0.5,0的立方根为,记为.,0,二、师生互动,课堂探究,(一)提出问题,引发讨论,而球的体积为时,r.,上述过程都是求一个数的立方根的运算,把求一个数的立方根的运算,叫做开立方.开立方与立方运算互为逆运算.,故正方体的体积为125时,其边长为,3.1,二、师生互动,课堂探究,(二)导入知识,解释疑难,a3的立方根是a,可记为(a为任意数)或者a3=M,则有,其中M为被开方数,3为根指数,且根指数为3时,不能省略,只有当根指数为2时,才能省略不写.,既然正数的立方是正数,负数的立方是负数,那么正数的立方根为正数,负数的立方根为负数,同理0的立方根是0.,归纳出其规律:,而的意义不同,其值也不同,若a0时,表示a的算术平方根的相反数,无意义;若a0时,则无意义.,因为=;=;所以;因为=;=;所以.,填一填:,-2,-2,=,-3,-3,=,二、师生互动,课堂探究,二、师生互动,课堂探究,例1:求下列各式的值:(1);(2);(3);(4).,解:(1);(2);(3);(4).,二、师生互动,课堂探究,例2:求下列各数的立方根,它们是有理数吗?(1)-27;(2);(3)-0.216;(4)-5.,解:(1)(-3)2=-27,故是有理数;,(2),故也是有理数;,(3)(-0.6)3=-0.216,是有理数;,二、师生互动,课堂探究,解:(4)对-5这个数,做如下尝试:13=1,23=8,53=125,1.73=4.913.发现4.913最接近5,故不能口算出其值,要借助计算器求值,且通过计算器检验知是一个无限不循环小数,不是有理数,=-1.71是一个近似数.,例2:求下列各数的立方根,它们是有理数吗?(1)-27;(2);(3)-0.216;(4)-5.,二、师生互动,课堂探究,解:=0;=2;=-5.,解:43=64,53=125,64100125,45.,(2)比较4、5、的大小.,练习:(1)求下列各数的立方根:0;8;-125.,二、师生互动,课堂探究,(1)若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512,当棱长为2n时,其体积为多少?,(二)导入知识,解释疑难,解:正方体棱长为1,则体积为1,棱长为2,则体积为8,比较两者棱长扩大到原来的2倍,体积扩大到原来的8倍,故当棱长为2n时,体积为8n3.,二、师生互动,课堂探究,(二)导入知识,解释疑难,(2)某正方体的体积为1时,其棱长为1;体积为2时,棱长为;体积为3时,棱长为,若体积扩大到原来的n倍,则棱长扩大到原来的多少倍?,解:当体积扩大到原来的n倍时,棱长扩大到原来的倍.,二、师生互动,课堂探究,(三)归纳总结,知识回顾,这节课学习了立方根的概念,立方根的表示方法以及如何求一个数的立方根.用计算器求任意数的立方根时,可先求出该数的绝对值的立方根,再根据该数的正负决定其值,注意区分平方根与立方根.,三、作业设计,2.求下列各数的立方根:(1);(2)64000;(3)47(精确到0.01).,(一)双基练习1.某数的立方根等于它本身,这个数是多少?,0或1,40,3.61,三、作业设计,3.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长、宽、高分别为160cm、80cm和40cm,求原立方体钢铁的棱长.,(一)双基练习,三、作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论