




已阅读5页,还剩70页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TimingSuccessiveProductIntroductionswithDemandDiffusionandStochasticTechnologyImprovement基于需求扩散和随机技术进步的连续产品引入过程,R.MarkKrankelDepartmentofIndustrialandOperationsEngineering,UniversityofMichigan,IzakDuenyas,RomanKapuscinskiRossSchoolofBusiness,UniversityofMichigan,AnnArbor,MichiganPresentbyLiWei,CONTENTS,IntroductionLiteratureModelOptimalPolicyComputationalStudyandInsightsExtensions,Introduction,Consideraninnovativefirmthatmanagesthedevelopmentandproductionofasingle,durableproduct.Overtime,thefirmsresearchanddevelopment(Rrather,itisdeterminedbythepaceoftechnologyimprovementalongwiththefirmsdynamicdecisionsonwhentointroduce.Analysisiscenteredupontwokeyinfluencesaffectingtheintroductiontimingdecisions:(1)demanddiffusiondynamics,wherefutureproductdemandisafunctionofpastsales(2)technologyimprovementprocess,specificallytheconceptthatdelayingintroductiontoalaterdatemayleadtothecaptureoffurtherimprovementsinproducttechnology.,Introduction,Previousliteratureexaminingincrementaltechnologyintroductionhasfocusedoneither(1)or(2),butnonehaveconsideredbothfactorssimultaneously.Asaresult,thepresentanalysisprovidesnewinsightintothestructureoftheoptimalintroductiontimingpolicyforaninnovativefirm.Usingaproposeddecisionmodelthatincorporatesbothkeyinfluences,weprovetheoptimalityofathresholdpolicy:itisoptimalforthefirmtointroducethenextproductgenerationwhenthetechnologyofthecurrentgenerationisbelowastate-dependentthreshold,inwhichthestateisdefinedbythefirmscumulativesalesandthetechnologylevelinRi.e.,onceanewgenerationisintroduced,salesofthepreviousgenerationimmediatelydroptoandremainatzero.Thispropertyisreferredtolaterasthe“completereplacement”condition.Itisassumedthat(1)availableproducttechnologyimprovesineachperiodaccordingtoastochasticprocess,and(2)salesforanygivengenerationfollowademanddiffusionprocess.,ModelNotationandAssumptions,Boththetechnologylevelandthepriceofanewproductareexpectedtoinfluencetheproductsmarketpotentialandassociateddemanddiffusiondynamics.Tounderstandtheeffectsofprogressingtechnologyindependentofothercompoundingfactors,weassumeaveryspecificbutrealisticpricingstrategythatmaintainsconstantunitprofitmargins.,ModelNotationandAssumptions,Asmentionedabove,salespotentialisassumedtobeanincreasingfunctionofproducttechnologylevel.Moreover,wedonotmodelcapacityconstraintsandassumethatalldemandcanbemetsothatsalesequalsdemand.,ModelFormulation,thefollowingassumptionismadeonthesalesratecurves:,ModelFormulation,(i)ensuresthat,allelseequal,productsalesrateisnondecreasinginproducttechnology.Part(ii)accommodatesrealisticdurable-goodmarketscenariosinwhichthepotentialmarketsizeisfiniteandcurrentperiodsalesdonotexceedtotalremainingmarketpotential.Condition(iii)limitstherateatwhichsalesdecreaseandinadiscrete-timeframeworkguaranteesthatthesalesratefromoneperiodtothenextdoesnotdecreaseatafasterpacethansalesaccumulatedwithintheperiod.,ModelFormulation,ModelFormulation,Theoptimumintroductionpolicyiscomputedfromtheoptimalityequation:,ModelRelationshiptoDemandDiffusion,Forthescenarioconsideredinthispaper,thereisanaturallinkbetweenthissalesmodelandthatofatypical(continuous-time)diffusionmodel.ConsidertheBassdiffusionmodelforasingleinnovativeproduct:,ModelRelationshiptoDemandDiffusion,MahajanandMuller(1996)presentanextensionoftheBassmodelforthecaseofmultipleproductgenerations.,ModelRelationshiptoDemandDiffusion,ModelRelationshiptoDemandDiffusion,whereaandbarecoefficientsofinnovationandimitation,respectively.Becausecumulativesalesistrackedasastatevariable,thedecisionmodel(1)(3)clearlycapturestheinteractionbetweenproductgenerationswhensalescurvesareofthedemanddiffusionform(6).Moreover,anexaminationof(6)showsthatthedemanddiffusionformsatisfiesAssumption1subjecttoamildrestrictiononproblemparameters.,OptimalPolicy,OptimalPolicy,OptimalPolicy,Thefirstresultstatesthatasthetwosystemsprogressovertime,thecumulativesaleslevelofthefirmwithlowerinitialcumulativesaleswillneversurpassthefirmwithhigherinitialcumulativesales.,OptimalPolicy,OptimalPolicy,Theresultstatesthatallelseequal,thediscountedoptimalprofit-to-goforafirmwithlowercumulativesaleswillnotexceedthatofafirmwithhighercumulativesalesbymorethanthenetvalueoftheircumulativesalesdifference.Thatis,futurebenefitscannotmakeupforthecurrentsalesdeficit.,OptimalPolicy,OptimalPolicy,OptimalPolicy,OptimalPolicy,OptimalPolicy,OptimalPolicy,OptimalPolicy,OptimalPolicy,OptimalPolicy,ComputationalStudyandInsights,Thenumericalstudyfocusesontheinfluencesofasimpletechnologydiscoveryrate,fixedproduct-introductioncosts,andmarketparametersincludingthediffusioncoefficientsandaparameterdescribingthesensitivityofproductmarketpotentialtochangesinproducttechnology.,ComputationalStudyandInsights,forpurposesofnumericalinvestigationwebeginwithasimplifiedbaselinescenario.Salesratecurvesforthebaselinescenarioaregeneratedwithinadiscrete-timeframeworktoapproximateademanddiffusionprocessaccordingtotheformgivenin(6).TechnologyimprovementisassumedtofollowasimplifiedstochasticprocessinwhichavailabletechnologyinRi.e.,firmswithahigherexpectedtechnologydiscoveryrateareexpectedtointroducenewproductgenerationsmorefrequentlyandwithlargertechnologygainsbetweengenerations.,ComputationalStudyandInsights,Next,weexaminetheinfluenceofthefirmscoststructureontheoptimalpolicy.AsillustratedinFigure8,adecreaseinthefixedintroductioncostKdecreasestheoptimalintroductionthresholdatanygivencumulativesaleslevel.,ComputationalStudyandInsights,Letusturntotheparametersthatdescribetheproductmarket.Themodeledproductsalesdynamicswillbeaffectedbythediffusioncoefficientsaandbin(6)aswellasthemarketpotentialparameterm,thatdeterminestheproductmarketpotentialforaspecifictechnologylevel.,ComputationalStudyandInsights,MarketPotentialParameterAnincreaseinmtranslatestolargergainsinmarketpotentialperunitgainintechnology.Inturn,thesalesrateatagivenlevelofcumulativesalesismoresensitivetoincreasesinproducttechnologywhenmishigher.,ComputationalStudyandInsights,DemandDiffusionCoefficientsAproductwithahighercoefficientofinnovationawouldexhibitasalesratecurvethatstartswithhigherone-periodsales,peaksearlier,andliescompletelyabovethatofaproductwithlowera.Figure10illustrateshowthecoefficientofinnovationinfluencestheproductsalesratecurves.,ComputationalStudyandInsights,DemandDiffusionCoefficientsWefindthataproductwithhighercoefficientofinnovationisassociatedwithmore-frequentproductintroductions.,ComputationalStudyandInsights,DemandDiffusionCoefficientsSimilartotheeffectofa,ahighercoefficientofimitationbtranslatestoasalesratecurvethatliescompletelyabovethatforlowerb.,ComputationalStudyandInsights,DemandDiffusionCoefficientsAswitha,theintroductionthresholdsaredecreasingintheproductscoefficientofimitationb.Thus,afirmshouldintroducenewproductgenerationsmorefrequentlygivenabasetechnologythatdiffusesthroughitspotentialadopterpopulationfaster.,ComputationalStudyandInsights,ComputationalStudyandInsights,UncertainDemandHere,wedescribetwopossiblescenariosforuncertaindemandalongwiththereviseddecision-modelformulations.,ComputationalStudyandInsights,ComputationalStudyandInsights,Thedecisionmodel(1)(3)isreformulatedasfollowstoaccommodatethissingle-perioddemanduncertainty:,ComputationalStudyandInsights,ComputationalStudyandInsights,Afirmmayalsowishtocapturetheuncertaintyinoverallmarketacceptanceofanewproductgenerationwhiletakingintoaccountpotentialcorrelationbetweenthemarketsuccessoftwosequentialgenerations.Forthedemanddiffusioncase,theestimationofanewgenerationsmarketpotentialN(z)isakeysourceofsuchuncertainty.,ComputationalStudyandInsights,ThepresentmodelframeworkcancapturethemarketsuccessuncertaintyforanewgenerationusingaMarkovmodulateddemandformulation.Apossibleimplementationispresentedhereforillustration.,ComputationalStudyandInsights,ComputationalStudyandInsights,Thedecisionmodel(12)(13)implementsthisMarkovmodulateddemandframeworkforaccommodatinguncertaintyinproductsuccess.,Extensions,Alimitationofouranalysisisthatthemodeldoesnotconsidertheeffectsofintroductiontimingonconsumerspurchasestrategiesandresultingdemandpatterns.Significantincreaseinthefirmspaceofproductintroductionsmaycauseconsumerstopostponepurchasedecisionsinanticipationo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鄂尔多斯市人民医院感染科医疗质量控制考核
- 忻州市人民医院肺功能急诊检查考核
- 赤峰市人民医院二维治疗计划设计原理与评估试题
- 2025第二人民医院辐射防护措施考核
- 鄂尔多斯市中医院多模式影像评估考核
- 中国三氧化二钴项目商业计划书
- 2025第三人民医院配置环境监测考核
- 中国一正丁胺项目商业计划书
- 2025年中国纳米银项目创业计划书
- 中国聚乙二醇4000项目经营分析报告
- 2025福建泉州晋江市智云数字科技有限公司招聘14人考试参考试题及答案解析
- 浙南名校联盟2025-2026学年高三上学期10月联考语文试卷
- 中职汽车营销试卷及答案
- 2025中国移动春季校园招聘笔试题库历年考点版附带答案详解
- 江西制造职业技术学院2025年第二批合同聘用制人员招聘考试模拟试题及答案解析
- 2025年机械工程师职称考试题及参考答案
- 护理专业科普
- EHS风险管理监测规范制定
- Unit 2 We are Family.单元测试( 含答案)2025-2026学年人教版(2024)英语七年级上册
- 2025“文化强国杯”全国高校文学知识挑战赛备赛试题库150题(含答案)
- 光华口腔医院种植进修护士工作汇报
评论
0/150
提交评论