已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲1、 三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。【例1】已知同时满足和,且a、b均不为0,求a、b的关系。练习: 已知sin(),cos(),求的值。2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变它应用广泛,方式灵活,如可变为();2可变为()();2可变为();2可看作4的倍角;(45)可看成(902)的半角等等。【例2】求sin(75)cos(45)cos(15)的值。练习 已知,求的值【例3】已知sinsin() (其中cosA),试证明:tan()提示:sin()sin ()(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2xcos2x,sec2xtan2x,csc2x cot2x,tanxcotx,secxcosx,tan45等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。【例5】解三角方程:sin2xsin22xsin23x(5)添补法与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。【例6】求证:(6)代数方法三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,从而将三角问题转换成代数问题来解,而且更加简捷。这其中有设元转化、利用不等式等方法。【例7】锐角、满足条件,则下列结论中正确的是()A.+ B. +C. + D. +(7)数形结合有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则可开辟解题捷径。利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思想。【例9】已知:,求的值。5. 非特殊角的化简、求值问题的解题方法探究 非特殊角的化简求值是给角求值中一类常见的三角求值类型,对于此类求值问题,由于涉及到的三角公式及其变形灵活多样,因而如何利用三角公式迅速准确的求值应是解决这类问题的重点,现在我们通过一个题目的解法探寻,体会非特殊角三角函数的求法。【题目】求的值。练习1 若,则的值为( )A. B. C. D. 2 函数的值域是( )A. B. C. D. 3. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为( )A. B. C. D. 4. 等于( )A. 1 B. 1 C. 2 D. 22、 辅助角公式及其应用辅助角公式对于形如y=asinx+bcosx的三角式,可变形如下:y=asinx=bcosx。1 求周期例1 求函数的最小正周期。2. 求最值例2. 已知函数f(x)=cos4x-2sinxcosx-sin4x。若,求f(x)的最大值和最小值。 3求值域例4. 求函数的值域。4 图象对称问题例6. 如果函数y=sin2x+acos2x的图象关于直线x=对称,那么a=( )(A) (B)(C)1(D)-15. 图象变换例7 已知函数该函数的图象可由的图象经过怎样的平移和伸缩变换得到?6. 求值例8. 已知函数f(x)=+sinxcosx。设(0,),f()=,求sin的值。7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年风险防范常识普及试题及答案解析
- 2026-2031中国女性时装行业市场调研与投资前景研究报告
- 2025年职业道德模拟试题及答案
- 2026年诊所与保险公司协议
- 劳动争议案件调解成功率分析
- 餐饮管理试题及解析
- 四年级上册科学教学设计-1.2《声音是怎样产生的》 教科版
- 儿科心衰应急预案演练脚本
- 2025年健康管理师高级健康管理实操技能鉴定试题及答案
- 2025麻精药品培训考试试题含参考答案
- 2025年公司财务总监年终总结(五篇)
- 水厂建设项目施工方案
- 2025湖北随州国有资本投资运营集团有限公司拟聘用人员笔试历年备考题库附带答案详解2卷
- 非洲猪瘟安全培训课件
- 2025陕西延长石油榆林煤化有限公司招聘120人笔试历年难易错考点试卷带答案解析试卷2套
- 2026中国人民大学管理职员和教师以外专业技术人员招聘考试笔试参考题库附答案解析
- 2025北京海淀高三上学期期中化学试卷和答案
- 幼小衔接阶段教育衔接策略与效果评价
- 口风琴上课课件
- 员工消防培训试题及答案
- 2025版哮喘病症状解读及护理要点
评论
0/150
提交评论