第一章_一阶微分方程的应用_第1页
第一章_一阶微分方程的应用_第2页
第一章_一阶微分方程的应用_第3页
第一章_一阶微分方程的应用_第4页
第一章_一阶微分方程的应用_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.8一阶微分方程的应用应用微分方程去解决一些实际问题应用介绍:应用大意应用一:曲线族的等角轨线应用二:雨滴的下落应用三:人口增长模型应用四:静脉注射给药应用五:水流问题,1:应用大意,适应范围与变化率有关的各种实际问题应用三步曲(1)建立模型Modelling(2)模型求解Solving(3)模型应用Application建议:模型要详略得当,应用一:曲线族的等角轨线,设给定一个平面上以C为参数的曲线族,(*),我们设法求出另一个以k为参数的曲线族,(*),使得曲线族(*)中的任一条曲线与曲线族,样的曲线族(*)是已知曲线族(*)的,等角轨线族。,正交轨线族。,的正交轨线族。,设y=y(x)为(C)中任一条曲线,于是存在相应的C,使得因为要求x,y,y的关系,将上式对x求导数,得(1.84)这样,将上两式联立,即由,上述关系式成为曲线族满足的微分方程,解:对方程两边关于x求导得,正交,故满足方程,曲线族为,这是一个椭圆,如右图,放大此图,图2.16,应用二:雨滴的下落,考虑雨滴在高空形成后下落的过程中速度的变化三种不同的假设(1)自由落体运动(2)小阻力的情况(3)大阻力的情况,(1)自由落体运动,下落过程中没有任何阻力,小阻力的情况,下落过程中阻力与速度和半径的乘积成比例,(3)大阻力的情况,下落过程中阻力与速度和半径的乘积平方成比例,三、药物设计,医生给病人开处方是必须注意两点:服药的剂量和服药的时间间隔。超剂量的药物会对患者产生严重不良后果,甚至死亡;剂量不足,则不能达到治疗的效果。,一次给药的药时曲线,治疗窗口,药物消除类型,1一级动力学消除(恒比消除):单位时间内按血药浓度的恒比进行消除。消除速度与血药浓度成正比。若以血药浓度(C)的对数与时间(t)作图,为一直线。,零级动力学消除(恒量消除):单位时间内始终以一个恒定的数量进行消除。消除速度与血药浓度无关。,是指包括零级和一级动力学消除在内的混合型消除方式。如当药物剂量急剧增加或患者有某些疾病,血浓达饱和时,消除方式则可从一级动力学消除转变为零级动力学消除。如乙醇血浓0.05mg/ml时,则可转成按零级动力学消除。,3米氏消除动力学(混合型消除):,模型及其数值实现,阅读材料:服药问题,医生给病人开处方时必须注明两点:服药的剂量和服药的时间间隔.超剂量的药品会对身体产生严重不良后果,甚至死亡,而剂量不足,则不能达到治病的目的.已知患者服药后,随时间推移,药品在体内逐渐被吸收,发生生化反应,也就是体内药品的浓度逐渐降低.药品浓度降低的速率与体内当时药品的浓度成正比.当服药量为A、服药间隔为T,试分析体内药的浓度随时间的变化规律.,体内药的浓度随时间的变化规律,Model3:Populationdynamics,Inthissectionweexamineequationsoftheformy=f(y),calledautonomousequations,wheretheindependentvariabletdoesnotappearexplicitly.,Themainpurposeofthissectionistolearnhowgeometricmethodscanbeusedtoobtainqualitativeinformationdirectlyfromdifferentialequationwithoutsolvingit.,Simplestmodel:populationgrowthrateisproportionaltocurrentsizeofthepopulation:,Solution:exponentialgrowth):,Model3:PopulationdynamicsLogisticGrowth,Anexponentialmodely=ry,withsolutiony=ert,predictsunlimitedgrowth,withrater0independentofpopulation.,Assuminginsteadthatgrowthratedependsonpopulationsize,replacerbyafunctionh(y)toobtainy=h(y)y.,Wewanttochoosegrowthrateh(y)sothath(y)rwhenyissmall,h(y)decreasesasygrowslarger,andh(y)0.,Ourdifferentialequationthenbecomes,ThisequationisknownastheVerhulst,orlogistic,equation.,Thelogisticequationfromthepreviousslideis,Thisequationisoftenrewrittenintheequivalentform,whereK=r/a.Theconstantriscalledtheintrinsicgrowthrate,andaswewillsee,Krepresentsthecarryingcapacityofthepopulation.,Adirectionfieldforthelogisticequationwithr=1andK=10isgivenhere.,Equilibriumsolutionsofthelogisticequation,Ourlogisticequationis,Twoequilibriumsolutionsareclearlypresent:,Indirectionfieldbelow,withr=1,K=10,notebehaviorofsolutionsnearequilibriumsolutions:y=0isunstable,y=K=10isasymptoticallystable.,Qualitativeanalysisofthelogisticequation,Tobetterunderstandthenatureofsolutionstoautonomousequationsy=f(y),westartbygraphingf(y)vs.y.,Inthecaseoflogisticgrowth,thatmeansgraphingthefollowingfunctionandanalyzingitsgraphusingcalculus.,Qualitativeanalysis,criticalpoints,Theinterceptsoffoccuraty=0andy=K,correspondingtothecriticalpointsoflogisticequation.,Thevertexoftheparabolais(K/2,rK/4),asshownbelow.,Qualitativeanalysis,increasing/decreasing,Notedy/dt0for0yK,soyisanincreasingfunctionoftthere(indicatewithrightarrowsalongy-axison0K).,Inthiscontextthey-axisisoftencalledthephaseline.,Qualitativeanalysis,concavity,Next,toexamineconcavityofy(t),wefindy:,Thusthegraphofyisconcaveupwhenfandfhavesamesign,whichoccurswhen0K.,Thegraphofyisconcavedownwhenfandfhaveoppositesigns,whichoccurswhenK/2yK.,Inflectionpointoccursatintersectionofyandliney=K/2.,Qualitativeanalysis,curvesketching,Combiningtheinformationonthepreviousslides,wehave:,Graphofyincreasingwhen0K.Slopeofyapproximatelyzerowheny0oryK.Graphofyconcaveupwhen0K.GraphofyconcavedownwhenK/2yK.Inflectionpointwheny=K/2.,Usingthisinformation,wecansketchsolutioncurvesyfordifferentinitialconditions.,Qualitativeanalysis,curvesketching,Usingonlytheinformationpresentinthedifferentialequationandwithoutsolvingit,weobtainedqualitativeinformationaboutthesolutiony.,Forexample,weknowwherethegraphofyisthesteepest,andhencewhereychangesmostrapidly.Also,ytendsasymptoticallytotheliney=K,forlarget.,ThevalueofKisknownasthecarryingcapacity,orsaturationlevel,forthespecies.,Notehowsolutionbehaviordiffersfromthatofexponentialequation,andthusthedecisiveeffectofnonlinearterminlogisticequation.,Model3:PopulationdynamicsExactsolution:separatingvariables,Providedy0andyK,wecanrewritethelogisticODE:,Expandingtheleftsideusingpartialfractions,Thusthelogisticequationcanberewrittenas,Integratingtheaboveresult,weobtain,Exactsolution:resolvingforexplicitsolution,Wehave:,If0y0K,then0yKandhence,Rewriting,usingpropertiesoflogs:,Exactsolution:resolvingforexplicitsolution,Wehave:,for0y0K.Also,thissolutioncontainsequilibriumsolutionsy=0andy=K.,Hencesolutiontologisticequationis,模型预测的动态行为与大量的实验和观测数据吻合,水的流出问题,一横截面积为A,高为H的水池内盛满了水,有池底一横截面积为B的小孔放水。设水从小孔流出的速度为,求在任意时刻的水面高度和将水放空所需的时间,问题分析,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论