2004年甲组高教杯获得者论文武大版_第1页
2004年甲组高教杯获得者论文武大版_第2页
2004年甲组高教杯获得者论文武大版_第3页
2004年甲组高教杯获得者论文武大版_第4页
2004年甲组高教杯获得者论文武大版_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

?21? ?7? 2004?12? ? CHINESE JOURNAL OF ENGINEERING MATHEMATICS Vol. 21 No. 7 Dec. 2004 ?:1005-3085(2004)07-0079-14 ? ?,?,? (? 430072) ?:? ? ? ? ? ?:? ? ? ? ? ? ? ? ? ? ? ? ?Huff man? ? ?Huff man? ? ? ? ? ?: ?Huff man? ?: AMS(2000) 62J05?: O212.1?: A 1?(?) 2? 1.? ? 2.AGC ? AGC ? 3.? 4.? 5.? 6.? 7.? 万方数据 80?21? 8.? 3? gi? i ?MW?i = 1,2,.,8? gi0? i ?MW? li? j ?MW?j = 1,2,.,6? aij? j ? i ? bj? j ? mj? j ?MW? rj? j ? j? j ? vi? i ?MW / ? gmi? i ?MW? pi(gi)? ? i ? gi?/MWh? pM?:?/MWh? PL?MW? E? t? 1/4 ? 4? 4.1? ? ? ? ? ? ? ?“?”? ? 4.2? ?1? ? ? ? 32? ?15? ? 4.3? ? ? ? 1. ? ? 万方数据 ?7?81 ? ? 2. ? ? 3. ? ? 4.4? ? ? 1. ? ?“?”? ? 2. ? ? 0? ? 3. ? ? 4. ? ?“?”? ? ? 5. ? 0? ? ? 0 ? ? ? 1? 4.5? ? 1. ? ? ? 8 P i=1 gi= PL? 2. ? ? ? gi0 vit gi gi0+ vit,i = 1,2,.,8 万方数据 82?21? 3. ? ? gmi? ? gi6 gmi, i = 1,2,.,8? 4. ? ? |lj| mj p(0) M ? g(1) i,k 0? ? Ei,k= (p(0) i,k p(0) M )(g(1) i,k g(0) i,k)t = (p (0) M p(0) i,k)(g (0) i,k g(1) i,k)t (5) ?E0= P i P k E0 i,k ?E = E0 万方数据 84?21? ? ? 0 ? 1 ? ? = 1? ? (4)?(5) ? ? g(1) i,k = g(0) i,k? E ? ? ? 5.2.2? ? ? ? gt?gt= PL? p(0) M ? ? p(1) M ? p(2) M ? ? E = t P (2) M P (0) M PL ? p(2) M = (1 )p(0) M + p(1) M ? ? = 1? 5.2.3? ? 1. ? ? ? 2. ? 3. ? pi,k= pM? E0 i,k = 0? ? ? 4. ? ? ? ? 5.3? ? ? ? Step1? ? ? PL? Step2? ? gi? gi? gi0? ? gi gi0 vi t? gi= gi0+ vi t? flagi= 1? ? gi gi06 vi t? gi= gi0 vi t? flagi= 1? ? gi?flagi= 0? 万方数据 ?7?85 Step3? ? flagi? 0? gi? i ? ? Step2 ? g = P i gi? Step4? ? g = PL? gi? i ? ? g PL ? flagi? 1 ? g PL ? flagi? -1? ? ? Step5? Step5? ? g PL? flagi6= 1 ? ? Step2? ? ? 5.4? 5.4.1? ?“?”? ? ? 1. ? ? ? ? |lj| mj 0,j = 1,2,.,6(6) ?lj= 8 P i=1 aijgi+ bj 2. ? ? ? minE s.t. 8 P i=1 gi= PL, |lj mj 0, gi0 vi t 6 gi6 gi0+ vi t, gi6 gmi (7) ? ? ? 7 ? 7 ? ? 3. ? 万方数据 86?21? ? 7 ? ? ? j ? j? ?j= |lj|/mj 1 rj ? |lj| = (1+rjj)mj? ? j? ?“?”? (a) ? ? ? min max j j ? s.t. P i gi= PL |lj| (1 + jrj)mj 0 gi0 vit 6 gi6 gi0+ vit gi6 gmi j6 1 (8) ? (8) ? j6j=1? ? (8) ? ? (b) ? (8) ? ? (8) ? ? minE s.t. P i gi= PL |lj| (1 + jrj)mj PL? Step4? Step2? Step4? ? P i gi= PL? ? ? MATLAB ? ? 4? 5? 2. ? (a) ? 8 ? ? 8? min s.t. P i gi= PL lj (1 + jrj)mj 0 gi0 vit 6 gi6 gi0+ vit gi6 gmi j6 0 6 6 1 ? 15 ? (g1,g2,.,g8,1,2,.,6,)? (b) ? 9 ? ? 7 ? min n max i pi(gi) o s.t. P i gi= PL lj (1 + jrj)mj 0 gi0 vit 6 gi6 gi0+ vit gi6 gmi j6 j 3. ? ? 10 ? max X i gi 万方数据 ?7?89 s.t. gi0 vi t 6 gi06 gi0+ vi t gi6 gmi lj (1 + rj)mj6 0 ? 8 ? (g1,g2,.,g8)? 5.5? 6? 6.1? 6.1.1? (1)? ?1? aij(i = 1,2 ,8)(102)R2F0: 1010 119.382,32.389,14.084,24.792,10.393,32.064,6.7494,13.0630.73079.688285053 27.7276,46.115,10.453,18.548,24.079,12.39,-8.3441,25.5640.62135.85964196100. 3-17.89?-21.49,-24.34,-13.62,-0.322,-19.396,5.098,-33.1560.800814.357240.85 44.3359,9.4364,26.689,6.9081,7.905,14.548,10.693,16.9170.875024.9968.7098 513.411,58.101,4.1388,11.312,9.0764,30.982,-6.9572,15.0070.60365.43756979500 635.901,24.627,1.823,23.298,18.844,21.738,10.674,14.4940.779712.6387992.1 ? 1 ? j ? j ? 1 0? ?2? aij(i = 1,2 ,8)(102)bjR2F0 18.2607,4.7764,5.2794,11.986,-2.5705,12.165,12.199,-0.15179110.480.999445376.80 2-5.4717,12.75,0.014644,3.3244,8.6667,-11.269,-1.8644, 9.8528131.350.999576970.20 3-6.9387,6.1985,-15.65,-0.9871,12.467,0.23561,-0.2787, -20.119-1090.99986217880 4-3.4632,-10.278,20.504,-2.0882,-1.2018,0.56932,14.522, 7.633677.6120.99988244240 50.03271,24.283,-6.471,-4.1202,-6.5452,7.0026,-0.38961, -0.917133.130.999536433.90 623.757,-6.0693,-7.8055,9.2897,4.6634,-0.029128,16.64, 0.0388120.850.99981160290 6.1.2? (2)? 6.2? ? ? 6.3? ? 982.4MW ? 3? 6.4? ? 982.4MW ? 3? ? 4? 5 ? ? 1?2 ? 6.5? 万方数据 90?21? ? 1052.8MW ? 6? ? 7? 8? ?3? ?12345678 ?120731808012512581.190 ?1507918099.512514095113.9 ?252300233302215252260303 ?33154819.527302127 ?306019.501513.923.9 ?303 ?4? ?123456 ?165150160155132162 ?173.3047141.0049-150.9235120.9114136.8265168.519 ?8.3047-8.9951-9.0765-34.08864.82656.519 ?5? ?153,86.87, 228, 90.1124, 152, 95.3222, 60.1,117 ?33,15,48,19.5,27,30,21,27 ?33,15,48,10.11,27,-29.69,-21,27 ?165,150,160,155,132,162 ?165,150,155.26,124.51,131.51,159.53 ?495 ?1?3183.1 ?2?47155 ?6? ?12345678 ?120731808012512581.190 ?15081218.299.5135150102.1117 ?252320356302310305306303 ?356 ?7? ?123456 ?165150160155132162 ?177.24141.17156.15129.74134.83167.06 ?12.24-8.83-3.85-25.262.835.06 万方数据 ?7?91 ? ?8? ?153,88,228,99.5,152,155,60.3,117 ?489,495,356,302,510,380,120,303 ?33,15,48,19.5,27,30,21,27 ?33,15,48,19.5,27,30,20.8,27 ?165,150,160,155,132,162 ?173.4093,143.5833,155.2113,124.6828,135.2969,160.4221 ?39.2%,12.3%,4.25%,-85.16%,30.23%,19.29% ?510 ?1?1962.3 ?2?40533 7? ? ? 1. ? ? 2. ? ? 3. ? ? 4. ? ? 5. ?“?”? ? 6. ? 7. ? Huff man ? ? 8. ? ? ? ?7? Pool ? ? 万方数据 92?21? 8? ? 1 ?. ?M. ?2003 2 ?. ?M. ?2002 3 ?. ?M. ?2000 4 ?. ?M. ?1997 5 ?. ?M. ?2001 6 ?. ?-?M. ?2000 7 ?. ?J. ?2002;(5):10-12 A Management Model for Transmission Congestion in Power Market YANG Shuang-hong, LIU Gang, YAN Qi (Wuhan University, Wuhan 430072 ) Abstract: In this paper, on the basis of an open and competitive market, model is developed to study the management of transmission congestion in an independent power system. Firstly, under the assumption of local linearization, the approximate formula for the relation of the power fl ow distribution to the machine output is derived by multivariate linear regression. Both the models with and without constant-term are considered and tested. Furthermore, according to the knowledge from power system analysis, we demonstrate that the model with the constant-term is more reasonable. Considering the eff ect of the congestion adjustment, we design two rules for calculating congestion cost and make detailed comparison between them. According to the transaction rule of the power market and accounting for the computation effi ciency as well, we use the recursion strategy to fi gure out a simple and feasible method for the preliminary scheme of output allocation. This article pro- poses a four-stage computation strategy for the congestion adjustment, which is: congestion check, pre-scheme adjustment, margin transmission and load limitation. In the fi rst stage, a group of inequalities are judged; the second stage is to program with the objective of minimum congestion cost; in the third stage, our fi rst target is the minimum occupancy of the margin, then the objective is the lowest congestion cost while the occupancy remains the same if no less than. In the last stage, assuring the lowest security level, the objective is maximum output. After simplifi cation, all models are linear except the second one, which is a staircase function maxi-min programming subjected to linear constraint condition. Also, we fi nd that the procedure is most effi cient if the Huff man tree is used as the decision tree. In this case, only a few simple rules are needed to deter

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论