




免费预览已结束,剩余28页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求数列的通项公式,学习目标,在了解数列概念的基础上,掌握几种常见递推数列通项公式的求解方法理解求通项公式的原理体会各种方法之间的异同,感受事物与事物之间的相互联系,例1、写出下面数列的一个通项公式,使它的前几项分别是下列各数。,已知数列的前几项,通常先将各项分解成几部分(如符号、分子、分母、底数、指数等),然后观察各部分与项数的关系,写出通项。,一、观察法,1、写出下列数列的一个通项公式:(1)9,99,999,9999,解:an=10n1,(2)1,11,111,1111,分析:注意观察各项与它的序号的关系有101,1021,1031,1041,解:an=(10n1),这是特殊到一般的思想,也是数学上重要的思想方法,但欠严谨!,分析:注意与熟悉数列9,99,999,9999,联系,练习:,注意:(1)这种做法适用于所有数列;(2)用这种方法求通项需检验a1是否满足an.,二、公式法(利用an与Sn的关系或利用等差、等比数列的通项公式),练习:1.an的前项和Sn=2n21,求通项an,解:当n2时,an=SnSn1=(2n21)2(n1)21=4n2,当n=1时,a1=1,不满足上式,3.已知an中,a1+2a2+3a3+nan=3n+1,求通项an,解:a1+2a2+3a3+nan=3n+1(n1),a1+2a2+3a3+(n1)an1=3n(n2),nan=3n+13n=23n,而n=1时,a1=9,(n2),两式相减得:,例3.已知an中,an+1=an+n(nN*),a1=1,求通项an,解:由an+1=an+n(nN*)得,an=(anan1)+(an1an2)+(a2a1)+a1=(n1)+(n2)+2+1+1,三、累加法,(递推公式形如an+1=an+f(n)型的数列),n个等式相加得,an+1an=n(nN*),(1)注意讨论首项;,(2)适用于an+1=an+f(n)型递推公式,求法:累加法,练习:,四、累乘法(形如an+1=f(n)an型),例4.已知an是首项为1的正项数列,且(n+1)an+12+an+1annan2=0,求an的通项公式,解:(n+1)an+12+an+1annan2=0,(an+1+an)(n+1)an+1nan=0,an+1+an0,(n1),an=.,(n+1)an+1=nan,练习1:,类型四、累乘法形如的递推式,四、累乘法适用于an+1=anf(n)型的递推公式,练习2,五、迭代法,例5.已知an中,an=3n1+an1,(n2),a1=1,求通项an.,解:an=3n1+an1(n2),an=3n1+an1=3n1+3n2+an2,=3n1+3n2+3n3+an3,=3n1+3n2+3n3+3+a1,=3n1+3n2+3n3+3+1,(递推公式形如an+1=an+f(n)型的数列),六待定系数法(构造法),例6:,解:由题意可知:an+1+1=2(an+1)所以数列an+1是以a1+1=2为首项,2为公比的等比数列.所以an+1=2n,即an=2n-1,反思:待定系数法如何确定x?,待定系数法:,令an+1+x=p(an+x),即,an+1=pan+px-x,根据已知x=,所以数列是等比数列.,类型七、相除法形如的递推式,例8:,【变式迁移】,已知数列an中,a15且an2an12n1(n2且nN*).(1)求证数列为等差数列;(2)求数列an的通项公式.,解:(1)方法1:(构造法)因为a15且an2an12n1,所以当n2时,an12(an11)2n,所以,所以,,所以是以为首项,以1为公差的等差数列.方法2:(代入法)因为a15,n2时,所以,所以是以为首项,以1为公差的等差数列.(2)由(1)知,所以an(n1)2n1.,练习.已知数列an中a1=2,an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年统编版(2024)小学道德与法治二年级上册每课教学反思
- 临沂高三三模数学试卷
- 拆除工程技术难点分析
- 青海高一文科数学试卷
- 名校高三月考数学试卷
- 满城县2024年小升初数学试卷
- 2025年小学论语试题及答案
- 梅岭中学二模数学试卷
- 2025年小学素质教育试题及答案
- 史青夷军人居庸课件
- 疫情防控实战演练方案脚本
- 资产评估事务所投标服务方案总体工作方案评估工作关键性内容及重难点分析
- Q∕SY 1356-2010 风险评估规范
- 拆卸与安装油箱加油管
- 《绿色物流与绿色供应链》PPT课件
- ISO13485-2016医疗器械质量管理体系全套资料(手册、程序文件、记录表单)
- 术前访视和术前准备注意事项.pptx
- 沪科版七年级数学上册全套ppt课件
- SCH壁厚等级对照表
- 特种车辆维护保养技术协议
- 函数的单调性 (2)
评论
0/150
提交评论