



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学等腰三角形的分类讨论等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。一、遇角需讨论例1. 已知等腰三角形的一个内角为75则其顶角为( )A. 30B. 75C. 105D. 30或75简析:75角可能是顶角,也可能是底角。当75是底角时,则顶角的度数为180752=30;当75角是顶角时,则顶角的度数就等于75。所以这个等腰三角形的顶角为30或75。故应选D。说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。二、遇边需讨论例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_。简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。故这个等腰三角形的周长等于16或17。说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。三、遇中线需讨论例3. 若等腰三角形一腰上的中线分周长为9cm和12cm两部分,求这个等腰三角形的底和腰的长。简析:已知条件并没有指明哪一部分是9cm,哪一部分是12cm,因此,应有两种情形。若设这个等腰三角形的腰长是cm,底边长为cm,可得或解得或即当腰长是6cm时,底边长是9cm;当腰长是8cm时,底边长是5cm。说明:这里求出来的解应满足三角形三边关系定理。四、遇高需讨论例4. 等腰三角形一腰上的高与另一腰所成的夹角为45,求这个等腰三角形的顶角的度数。简析:依题意可画出图1和图2两种情形。图1中顶角为45,图2中顶角为135。例5. 为美化环境,计划在某小区内用的草皮铺设一块一边长为10的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。简析:在等腰ABC中,设AB=10,作CDAB于D,由,可得CD=6。如下图,当AB为底边时,AD=DB=5,所以。如下图,当AB为腰且ABC为锐角三角形时,所以,。如下图,当AB为腰且ABC为钝角三角形时,所以。说明:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外。五、遇中垂线需讨论例6.在ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50,则底角B=_。简析:按照题意可画出如图1和如图2两种情况的示意图。如图1,当交点在腰AC上时,ABC是锐角三角形,此时可求得A=40,所以B=C=(18040)=70。如图2,当交点在腰CA的延长线上时,ABC为钝角三有形,此时可求得BAC=140,所以B=C=(180140)=20故这个等腰三角形的底角为70或20。说明:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题。六、和方程问题的综合讨论例7. 已知ABC的两边AB,AC的长是关于的一元二次方程 的两个实数根,第三边BC长为5。(1)为何值时,ABC是以BC为斜边的直角三角形?(2)为何值时,ABC是等腰三角形,并求ABC的周长。简析:(1)略。(2)若ABC是等腰三角形,则有AB=AC,AB=BC,AC=BC这三种情形。方程可化为,即,显然,即。当AB=BC或AC=BC时,5是方程的根。当时,代入原方程可得,解得,。当时,原方程的解为,等腰AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚协议签订后子女抚养费支付及变更合同
- 离婚房产过户至子女名下合同范本及法律风险
- 《离婚协议履行及子女抚养费用支付告知单》
- 离婚协议书模板:离婚后子女抚养权争议调解协议
- 乐器零售行业消费者满意度调查-洞察及研究
- 健康饮品市场趋势-洞察及研究
- 企业融资与创新能力提升的关联分析-洞察及研究
- 2025年生物医药医疗器械检测中心建设与产业转型升级可行性分析报告
- 2025-2030零碳建筑技术标准体系与开发商投资意愿分析研究报告
- 果蔬调味酱果冻创新创业项目商业计划书
- 2025-2026学年人教版(2024)小学美术二年级上册(全册)教学设计(附目录P144)
- 智慧校园建设“十五五”发展规划
- 流管专员笔试题目及答案
- DBJ15 31-2016建筑地基基础设计规范(广东省标准)
- 第2课《树立科学的世界观》第2框《用科学世界观指导人生发展》-【中职专用】《哲学与人生》同步课堂课件
- 《照明线路安装与检修》一体化课件-第一章 职业感知与安全用电
- GB/T 28121-2011非热封型茶叶滤纸
- 低压电气基础知识培训课件
- 2023年廊坊市投资控股集团有限公司招聘笔试模拟试题及答案解析
- 苹果栽培学完整版课件
- 沁园春长沙完美版课件
评论
0/150
提交评论