




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,一、计算排列的逆序数,二、计算(证明)行列式,三、克莱姆法则,上一页下一页返回,.,2,分别算出排列中每个元素前面比它大的数码之和,即算出排列中每个元素的逆序数,解,例,一、计算排列的逆序数,上一页下一页返回,.,3,上一页下一页返回,.,4,于是排列的逆序数为,上一页下一页返回,.,5,用定义计算(证明),例用行列式定义计算,二、计算(证明)行列式,上一页下一页返回,.,6,解,上一页下一页返回,.,7,评注本例是从一般项入手,将行标按标准顺序排列,讨论列标的所有可能取到的值,并注意每一项的符号,这是用定义计算行列式的一般方法,注意,上一页下一页返回,.,8,利用范德蒙行列式计算,例3计算,利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。,上一页下一页返回,.,9,解,上一页下一页返回,.,10,上面等式右端行列式为n阶范德蒙行列式,由范德蒙行列式知,上一页下一页返回,.,11,评注本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式,上一页下一页返回,.,12,用化三角形行列式计算,例4计算,上一页下一页返回,.,13,解,上一页下一页返回,.,14,提取第一列的公因子,得,上一页下一页返回,.,15,上一页下一页返回,.,16,评注本题利用行列式的性质,采用“化零”的方法,逐步将所给行列式化为三角形行列式化零时一般尽量选含有的行(列)及含零较多的行(列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数化为1;若所给行列式中元素间具有某些特点,则应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的,上一页下一页返回,.,17,用降阶法计算,例5计算,解,上一页下一页,.,18,上一页下一页返回,.,19,上一页下一页返回,.,20,上一页下一页返回,.,21,评注本题是利用行列式的性质将所给行列式的某行(列)化成只含有一个非零元素,然后按此行(列)展开,每展开一次,行列式的阶数可降低1阶,如此继续进行,直到行列式能直接计算出来为止(一般展开成二阶行列式)这种方法对阶数不高的数字行列式比较适用,上一页下一页返回,.,22,用拆成行列式之和计算,例6证明,证,上一页下一页返回,.,23,用递推法计算,例7计算,解,上一页下一页返回,.,24,上一页下一页返回,.,25,上一页下一页返回,.,26,由此递推,得,如此继续下去,可得,上一页下一页返回,.,27,上一页下一页返回,.,28,评注,上一页下一页返回,.,29,用数学归纳法,例8证明,上一页下一页返回,.,30,证,对阶数n用数学归纳法,上一页下一页返回,.,31,上一页下一页返回,.,32,评注,上一页下一页返回,.,33,计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法,小结,上一页下一页返回,.,34,当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则为了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数的线性方程组后再求解,三、Grame
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第十九课 运动场上我最棒说课稿-2025-2026学年小学心理健康北师大版五年级下册-北师大版
- 一年级道德与法治下册 第二单元 春天到了 第5课《探索春天的奥秘》说课稿 冀教版
- 中医医师考试题及答案
- 中医试题及答案解析
- 2025年陕西学前师范学院单招职业技能考试题库夺冠系列
- 广东省肇庆市碧海湾学校、博纳实验学校2025-2026学年高一上学期9月月考历史试题(含解析)
- 城市园林编制外员工劳动合同及养护责任协议
- 便利店品牌直营店承包经营合同
- 包含押金退还流程的出租房退房手续合同
- 个人股权无偿转让与公司战略合作伙伴合同
- 机械维修作业指导书
- 我长大了课件
- GB/T 45340-2025金属及其他无机覆盖层镀层厚度的测量斐索多光束干涉法
- 化验员基础知识培训课件
- 2025驻村工作计划
- 医疗器械管理制度
- 《思想道德与法治》(23版):绪论 担当复兴大任 成就时代新人
- 弘扬志愿服务精神主题班会
- 血透病人高血压护理查房
- 电瓶车撞车调解协议书(2篇)
- 2024版非ST段抬高型急性冠脉综合征诊断和治疗指南解读
评论
0/150
提交评论