




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,事件的独立性,.,什么叫做互斥事件?什么叫做对立事件?,两个互斥事件A、B有一个发生的概率公式是什么?,不可能同时发生的两个事件叫做互斥事件;如果两个互斥事件有一个不发生时另一个必发生,这样的两个互斥事件叫对立事件.,P(A+B)=P(A)+(B),P(A)+P()=1,复习回顾,一般地,如果事件,彼此互斥,那么事件发生(即中恰有一个发生)的概率:,.,(4).条件概率设事件A和事件B,且P(A)0,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。记作P(B|A).,(5).条件概率计算公式:,复习回顾,注意条件:必须P(A)0,.,思考1:三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A为“第一位同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。事件A的发生会影响事件B发生的概率吗?,分析:事件A的发生不会影响事件B发生的概率。于是:,.,1、事件的相互独立性,相互独立事件及其同时发生的概率,设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。即事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件。,注:区别:互斥事件和相互独立事件是两个不同概念:,两个事件互斥是指这两个事件不可能同时发生;两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响。,相互独立,.,试一试判断事件A,B是否为互斥,互独事件?,1.篮球比赛“罚球二次”.事件A表示“第1球罚中”,事件B表示“第2球罚中”.,2.袋中有4个白球,3个黑球,从袋中依次取2球.事件A:“取出的是白球”.事件B:“取出的是黑球”(不放回抽取),3.袋中有4个白球,3个黑球,从袋中依次取2球.事件A为“取出的是白球”.事件B为“取出的是白球”.(放回抽取),A与B为互独事件,A与B为互独事件,A与B为非互独也非互斥事件,一般地,如果事件A1,A2,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即,P(A1A2An)=P(A1)P(A2)P(An),.,例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽中奖中以下事件的概率:(1)都抽到某一指定号码;,解:(1)记“第一次抽奖抽到某一指定号码”为事件A,“第二次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率,.,例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽中奖中以下事件的概率:(2)恰有一次抽到某一指定号码;,.,例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽中奖中以下事件的概率:(3)至少有一次抽到某一指定号码;,.,巩固练习,1、在一段时间内,甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定在这段时间内两地是否下雨相互之间没有影响,计算在这段时间内:(1)甲、乙两地都下雨的概率;,(2)甲、乙两地都不下雨的概率;,(3)其中至少有一方下雨的概率.,P=0.20.30.06,P=(1-0.2)(1-0.3)=0.56,P=1-0.56=0.44,.,例2甲、乙二人各进行1次射击,如果2人击中目标的概率都是0.6,计算:,(1)两人都击中目标的概率;,解:(1)记“甲射击1次,击中目标”为事件A.“乙射击1次,击中目标”为事件B.,答:两人都击中目标的概率是0.36,且A与B相互独立,,又A与B各射击1次,都击中目标,就是事件A,B同时发生,,根据相互独立事件的概率的乘法公式,得到,P(AB)=P(A)P(B)=0.60.60.36,.,例2甲、乙二人各进行1次射击,如果2人击中目标的概率都是0.6,计算:,(2)其中恰有1人击中目标的概率?,解:“二人各射击1次,恰有1人击中目标”包括两种情况:一种是甲击中,乙未击中(事件),答:其中恰由1人击中目标的概率为0.48.,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率是,另一种是甲未击中,乙击中(事件B发生)。,.,例2甲、乙二人各进行1次射击比赛,如果2人击中目标的概率都是0.6,计算:,(3)目标被击中的概率.,解法1:目标被击中的概率是,解法2:两人都未击中的概率是,答:至少有一人击中的概率是0.84.,.,例3在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.,.,由题意,这段时间内3个开关是否能够闭合相互之间没有影响。,所以这段事件内线路正常工作的概率是,答:在这段时间内线路正常工作的概率是0.973,解:分别记这段时间内开关能够闭合为事件A,B,C.,根据相互独立事件的概率乘法式这段时间内3个开关都不能闭合的概率是,.,例4甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为,.)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率,.,解:()设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.,由题设条件有,由、得,代入得27P(C)251P(C)+22=0.解得,(舍去),将,分别代入、可得,即甲、乙、丙三台机床各加工的零件是一等品的概率分别是,.,()记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则,故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为,.,练习:某战士射击中靶的概率为0.99.若连续射击两次.求:(1)两次都中靶的概率;(2)至少有一次中靶的概率:(3)至多有一次中靶的概率;(4)目标被击中的概率.,分析:设事件A为“第1次射击中靶”.B为“第2次射击中靶”.又A与B是相互独立事件.,“两次都中靶”是指“事件A发生且事件B发生”即ABP(AB)=P(A)P(B)=,.,1.射击时,甲射10次可射中8次;乙射10次可射中7次.则甲,乙同时射中同一目标的概率为_,2.甲袋中有5球(3红,2白),乙袋中有3球(2红,1白).从每袋中任取1球,则至少取到1个白球的概率是_,3.甲,乙二人单独解一道题,若甲,乙能解对该题的概率分别是m,n.则此题被解对的概率是_,m+n-mn,5.加工某产品须经两道工序,这两道工序的次品率分别为a,b.且这两道工序互相独立.产品的合格的概率是_.,(1-a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江舟山市普陀区妇幼健康服务中心招聘编外人员1人考试模拟试题及答案解析
- 2025云南黄金集团第二次招聘工作人员8人笔试备考题库及答案解析
- 2025安徽合肥凯欣教育集团招聘2人考试参考题库附答案解析
- 2025云南楚雄州武定县插甸学校教师招考13人流动考试备考试题及答案解析
- 2025浙江绍兴市人防工程质量安全和技术服务中心编外用工招聘1人笔试参考题库附答案解析
- 2025贵州贵阳市某机关工作人员招聘笔试参考题库附答案解析
- 2025贵州贵阳市公安局面向社会公开招聘警务辅助100人笔试参考题库附答案解析
- 2025浙江金华市金西丰子恺学校(汤溪中学委托管理)招聘储备教师4人考试参考题库附答案解析
- 2025安徽长丰县北城世纪城学校临聘教师招聘24人笔试模拟试题及答案解析
- 2025年宣城市中心医院第二批次招聘10人考试模拟试题及答案解析
- 2023年河北省民政行业职业技能大赛遗体火化师赛项参考赛题
- 投资意向协议书2篇
- 《战略与战略管理》课件
- 《生物安全柜的使用》课件
- 比亚迪电动汽车无线充电技术研发
- 新疆维吾尔自治区、新疆生产建设兵团2020年中考语文试卷及答案
- 酒吧防恐怖袭击应急预案
- GB/T 23986.2-2023色漆和清漆挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定第2部分:气相色谱法
- 重点单位消防八本台帐
- 新机构CK6150数控车床使用说明书(通用)
- 售后维修服务单
评论
0/150
提交评论