证明线段相等的技巧_第1页
证明线段相等的技巧_第2页
证明线段相等的技巧_第3页
证明线段相等的技巧_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

证明线段相等的技巧要证明两条线段相等,一般的思路是从结论入手,结合已知分析,主要看要证明的两条线段分布的位置怎样,无外乎有三种情况:(1)要证明的两条线段分别在两个三角形中;(2)要证明的两条线段在同一个三角形中;(3)要证明的两条线段在同一条直线上或其它情况。一、如果要证明的两条线段分别在两个三角形中一般的思路是利用两条线段所在的两个三角形全等。例1 已知:如图1,B、C、E三点在一条直线上,ABC和DCE均为等边三角形,连结AE、DB,求证:AE=DB。 二、如果要证明的两条线段在同一三角形中一般的思路是利用等角对等边。例2 已知:如图2,ABC中AB=AC,D为BC上一点,过D作DFBC交AC于E,交BA的延长线于F,求证:AE=AF。三、如果要证明的线段在同一直线上或其它情况一般的思路是作辅助线构成全等三角形或利用面积法来证明。例3 已知:如图3,ABC中AB=AC,D是AB上一点,E是AC延长线上一点,且BD=EC,连结DE交BC于F,求证:DF=EF。例4 已知:如图5,在平行四边形ABCD中,E、F分别为边AD、CD上一点,且BE=BF,AGBF于F,CHBE于H,求证:AG=CH。分析:从结论入手,要证线段AG=CH就看线段AG、CH是否在同一三角形中的两条边或两个三角形中的两条边,这里的AG、CH虽然在两个三角形中,但显然不全等,作辅助线构成全等三角形也无法作,由于BE=BF要证明的线段AG、CH恰是这两边上的高,这时就应该想到面积法,作辅助线构成两个等底等高的三角形或平行四边形,很显然结合已知条件可知构成平行四边形,延长AD到S使DS=AE,连结CS。延长ACD到R使DR=CF,连结AR证明略。证明线段和角相等的技巧 怎样证明两线段相等证明两线段相等的常用方法和涉及的定理、性质有: 三角形两线段在同一三角形中,通常证明等角对等边;证明三角形全等:全等三角形的对应边相等,全等形包括平移型、旋转型、翻折型;等腰三角形顶角的平分线或底边上的高平分底边;线段中垂线性质:线段垂直平分线上的点到这条线段的两个端点的距离相等;角平分线性质:角平分线上的点到这个角两边的距离相等;过三角形一边的中点平行于另一边的直线必平分第三边; 证特殊四边形平行四边形的对边相等、对角线互相平分;矩形的对角线相等,菱形的四条边都相等;等腰梯形两腰相等,两条对角线相等; 圆同圆或等圆的半径相等;圆的轴对称性(垂径定理及其推论):垂直于弦的直径平分这条弦;平分弦所对的一条弧的直径垂直平分这条弦;圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等;从圆外一点引圆的两条切线,它们的切线长相等; 等量代换:若a=b,b=c,则a=c;等式性质:若a=b,则ac=bc;若,则a=b.此外,也有通过计算证明两线段相等,有些条件下可以利用面积法、相似线段成比例的性质等证明线段相等. 怎样证明两角相等证明两角相等的方法和涉及的定理、性质有: 同角(或等角)的余角、补角相等; 证明两直线平行,同位角、内错角相等; 到角的两边距离相等的点,在这个角的平分线上; 全等三角形、相似三角形的对应角相等; 同一三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论