




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TipsforDeepLearning,NeuralNetwork,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,NO,NO,Overfitting!,RecipeofDeepLearning,DonotalwaysblameOverfitting,DeepResidualLearningforImageRecognition/abs/1512.03385,TestingData,Overfitting?,TrainingData,Notwelltrained,NeuralNetwork,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,RecipeofDeepLearning,Differentapproachesfordifferentproblems.,e.g.dropoutforgoodresultsontestingdata,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,RecipeofDeepLearning,HardtogetthepowerofDeep,Deeperusuallydoesnotimplybetter.,ResultsonTrainingData,VanishingGradientProblem,Largergradients,Almostrandom,Alreadyconverge,basedonrandom!?,Learnveryslow,Learnveryfast,Smallergradients,VanishingGradientProblem,Intuitivewaytocomputethederivatives,=?,+,+,Smallergradients,ReLU,RectifiedLinearUnit(ReLU),Reason:,1.Fasttocompute,2.Biologicalreason,3.Infinitesigmoidwithdifferentbiases,4.Vanishinggradientproblem,XavierGlorot,AISTATS11,AndrewL.Maas,ICML13,KaimingHe,arXiv15,ReLU,0,0,0,0,ReLU,AThinnerlinearnetwork,Donothavesmallergradients,ReLU-variant,alsolearnedbygradientdescent,Maxout,LearnableactivationfunctionIanJ.Goodfellow,ICML13,Max,Input,Max,7,1,Max,Max,2,4,ReLUisaspecialcasesofMaxout,Youcanhavemorethan2elementsinagroup.,neuron,Maxout,0,0,=+,1=+,2=0,ReLUisaspecialcasesofMaxout,Maxout,=+,1=+,2=+,LearnableActivationFunction,MorethanReLU,Maxout,LearnableactivationfunctionIanJ.Goodfellow,ICML13ActivationfunctioninmaxoutnetworkcanbeanypiecewiselinearconvexfunctionHowmanypiecesdependingonhowmanyelementsinagroup,2elementsinagroup,3elementsinagroup,Maxout-Training,Givenatrainingdatax,weknowwhichzwouldbethemax,Max,Input,Max,11,21,Max,Max,12,22,1,2,11,21,Maxout-Training,Givenatrainingdatax,weknowwhichzwouldbethemaxTrainthisthinandlinearnetwork,Input,11,21,12,22,1,2,Differentthinandlinearnetworkfordifferentexamples,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,RecipeofDeepLearning,Review,LargerLearningRate,SmallerLearningRate,Adagrad,+1=02,Usefirstderivativetoestimatesecondderivative,RMSProp,1,2,ErrorSurfacecanbeverycomplexwhentrainingNN.,LargerLearningRate,SmallerLearningRate,RMSProp,1000,2111,+1,0=0,1=02+112,3222,2=12+122,=12+12,RootMeanSquareofthegradientswithpreviousgradientsbeingdecayed,Hardtofindoptimalnetworkparameters,TotalLoss,Thevalueofanetworkparameterw,Veryslowattheplateau,Stuckatlocalminima,=0,Stuckatsaddlepoint,=0,0,Inphysicalworld,Momentum,Howaboutputthisphenomenoningradientdescent?,Review:VanillaGradientDescent,Startatposition0,Computegradientat0,Moveto1=0-0,Computegradientat1,Moveto2=11,Movement,Gradient,0,1,2,3,0,1,2,3,Stopuntil0,Momentum,Startatpoint0,Computegradientat0,Moveto1=0+v1,Computegradientat1,Movementv0=0,Movementv1=v0-0,Movementv2=v1-1,Moveto2=1+v2,Movement,Gradient,0,1,2,3,0,1,2,3,Movementnotjustbasedongradient,butpreviousmovement.,Movementoflaststep,Movement:movementoflaststepminusgradientatpresent,Momentum,viisactuallytheweightedsumofallthepreviousgradient:0,1,1,v0=0,v1=-0,v2=-0-1,Startatpoint0,Computegradientat0,Moveto1=0+v1,Computegradientat1,Movementv0=0,Movementv1=v0-0,Movementv2=v1-1,Moveto2=1+v2,Movementnotjustbasedongradient,butpreviousmovement,Movement:movementoflaststepminusgradientatpresent,Movement=Negativeof+Momentum,Momentum,cost,=0,Stillnotguaranteereachingglobalminima,butgivesomehope,Adam,RMSProp+Momentum,formomentum,forRMSprop,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,RecipeofDeepLearning,EarlyStopping,Epochs,TotalLoss,Trainingset,Testingset,Stopathere,Validationset,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,RecipeofDeepLearning,Regularization,NewlossfunctiontobeminimizedFindasetofweightnotonlyminimizingoriginalcostbutalsoclosetozero,Originalloss(e.g.minimizesquareerror,crossentropy),(usuallynotconsiderbiases),Regularizationterm,L2regularization:,Regularization,Newlossfunctiontobeminimized,Gradient:,Update:,Closertozero,WeightDecay,L2regularization:,Regularization,Newlossfunctiontobeminimized,Update:,Alwaysdelete,L1regularization:,L2,Regularization-WeightDecay,Ourbrainprunesouttheuselesslinkbetweenneurons.,Doingthesamethingtomachinesbrainimprovestheperformance.,GoodResultsonTestingData?,GoodResultsonTrainingData?,YES,YES,RecipeofDeepLearning,Dropout,Training:,Eachtimebeforeupdatingtheparameters,Eachneuronhasp%todropout,Dropout,Training:,Eachtimebeforeupdatingtheparameters,Eachneuronhasp%todropout,Usingthenewnetworkfortraining,Thestructureofthenetworkischanged.,Thinner!,Foreachmini-batch,weresamplethedropoutneurons,Dropout,Testing:,Nodropout,Ifthedropoutrateattrainingisp%,alltheweightstimes1-p%,Assumethatthedropoutrateis50%.Ifaweightw=1bytraining,set=0.5fortesting.,Dropout-IntuitiveReason,Training,Testing,Dropout(腳上綁重物),Nodropout(拿下重物後就變很強),Dropout-IntuitiveReason,Whenteamsup,ifeveryoneexpectthepartnerwilldothework,nothingwillbedonefinally.,However,ifyouknowyourpartnerwilldropout,youwilldobetter.,我的partner會擺爛,所以我要好好做,Whentesting,noonedropoutactually,soobtaininggoodresultseventually.,Dropout-IntuitiveReason,Whytheweightsshouldmultiply(1-p)%(dropoutrate)whentesting?,TrainingofDropout,TestingofDropout,1,2,3,4,1,2,3,4,Assumedropoutrateis50%,0.5,0.5,0.5,0.5,Nodropout,Dropoutisakindofensemble.,Ensemble,Network1,Network2,Network3,Network4,Trainabunchofnetworkswithdifferentstructures,TrainingSet,Set1,Set2,Set3,Set4,Dropoutisakindofensemble.,Ensemble,y1,Network1,Network2,Network3,Network4,Testingdatax,y2,y3,y4,average,Dropoutisakindofensemble.,TrainingofDropout,minibatch1,Usingonemini-batchtotrainonenetwork,Someparametersinthenetworkareshared,minibatch2,minibatch3,minibatch4,Mneurons,2Mpossiblenetwork
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 病房日常消毒与终末消毒程序考试试题(附答案)
- 树立良好班风的课件
- 2024届水泥厂环保类知识竞赛题库及答案
- 危重患者的肠内营养护理考核试题及答案
- 口腔预防医学考试题含参考答案
- (2024)时事政治试题库附答案(考试直接用)
- 2024年《服装结构及款式设计师》专业技术及理论知识考试题与答案
- WST368-2025医院空气净化管理标准培训
- 标本采集培训课件
- 北京咖啡知识培训课件
- 2025年健康杯爱国卫生知识竞赛试题及答案
- 膀胱多处恶性肿瘤的个案护理
- 2025年贵州贵阳市水务环境集团有限公司招聘27人笔试参考题库附带答案详解(10套)
- 2025届中国南方航空“明珠优才管培生”全球招聘30人笔试参考题库附带答案详解(10套)
- 原发性系统性淀粉样变性的护理措施课件
- 2025新疆吐鲁番市法检系统面向社会招聘聘用制书记员23人考前自测高频考点模拟试题参考答案详解
- 《阿房宫赋》课件 统编版高中语文必修下册
- 桥小脑角肿瘤护理查房
- 2025小学教师招聘考试试题及答案
- 2025年纪律作风测试题及答案
- 新《治安管理处罚法》培训考试题库附答案
评论
0/150
提交评论